Kent Edrian Lozada;Dong-Jin Chang;Dong-Ryeol Oh;Min-Jae Seo;Seung-Tak Ryu
{"title":"SAR 辅助型高能效混合 ADC","authors":"Kent Edrian Lozada;Dong-Jin Chang;Dong-Ryeol Oh;Min-Jae Seo;Seung-Tak Ryu","doi":"10.1109/OJSSCS.2024.3472000","DOIUrl":null,"url":null,"abstract":"The distinct advantages of low power consumption and hardware compactness make SAR ADCs especially appealing in scaled CMOS technologies, garnering significant attention. The residue left on the capacitor digital-to-analog converter (CDAC) after conversion in the SAR ADC negates the need for complex residue extraction circuits. This crucial feature has inspired numerous SAR-assisted architectural variations, employed in a range of applications from high resolution to high speed. This article introduces several energy-efficient hybrid ADC architectures that incorporate SAR ADCs as their sub blocks, including the following: SAR-assisted subranging SAR, which saves DAC switching power and can detect skew errors for time-interleaved ADCs; SAR-flash hybrid for energy-efficient high-speed conversion; SAR-assisted dual-residue pipelined ADC, which eliminates the stringent requirement for residue gain accuracy; and SAR-assisted delta–sigma modulator (DSM) with digital-domain noise coupling, which reduces the number of required analog integrators.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"163-175"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10702510","citationCount":"0","resultStr":"{\"title\":\"SAR-Assisted Energy-Efficient Hybrid ADCs\",\"authors\":\"Kent Edrian Lozada;Dong-Jin Chang;Dong-Ryeol Oh;Min-Jae Seo;Seung-Tak Ryu\",\"doi\":\"10.1109/OJSSCS.2024.3472000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distinct advantages of low power consumption and hardware compactness make SAR ADCs especially appealing in scaled CMOS technologies, garnering significant attention. The residue left on the capacitor digital-to-analog converter (CDAC) after conversion in the SAR ADC negates the need for complex residue extraction circuits. This crucial feature has inspired numerous SAR-assisted architectural variations, employed in a range of applications from high resolution to high speed. This article introduces several energy-efficient hybrid ADC architectures that incorporate SAR ADCs as their sub blocks, including the following: SAR-assisted subranging SAR, which saves DAC switching power and can detect skew errors for time-interleaved ADCs; SAR-flash hybrid for energy-efficient high-speed conversion; SAR-assisted dual-residue pipelined ADC, which eliminates the stringent requirement for residue gain accuracy; and SAR-assisted delta–sigma modulator (DSM) with digital-domain noise coupling, which reduces the number of required analog integrators.\",\"PeriodicalId\":100633,\"journal\":{\"name\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"volume\":\"4 \",\"pages\":\"163-175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10702510\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10702510/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10702510/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
SAR ADC 具有功耗低、硬件结构紧凑等显著优势,因此在按比例 CMOS 技术中尤其具有吸引力,备受关注。SAR ADC 在转换后会在电容数模转换器 (CDAC) 上留下残留物,因此无需复杂的残留物提取电路。这一关键特性激发了众多 SAR 辅助架构的变化,并被应用于从高分辨率到高速度的一系列应用中。本文介绍了几种将 SAR ADC 作为子模块的高能效混合 ADC 架构,包括以下几种:SAR 辅助亚量程 SAR,可节省 DAC 开关电源,并能检测时间交错 ADC 的偏斜误差;SAR-闪存混合,可实现高能效高速转换;SAR 辅助双残差流水线 ADC,可消除对残差增益精度的严格要求;以及 SAR 辅助三角积分调制器 (DSM),具有数域噪声耦合功能,可减少所需的模拟积分器数量。
The distinct advantages of low power consumption and hardware compactness make SAR ADCs especially appealing in scaled CMOS technologies, garnering significant attention. The residue left on the capacitor digital-to-analog converter (CDAC) after conversion in the SAR ADC negates the need for complex residue extraction circuits. This crucial feature has inspired numerous SAR-assisted architectural variations, employed in a range of applications from high resolution to high speed. This article introduces several energy-efficient hybrid ADC architectures that incorporate SAR ADCs as their sub blocks, including the following: SAR-assisted subranging SAR, which saves DAC switching power and can detect skew errors for time-interleaved ADCs; SAR-flash hybrid for energy-efficient high-speed conversion; SAR-assisted dual-residue pipelined ADC, which eliminates the stringent requirement for residue gain accuracy; and SAR-assisted delta–sigma modulator (DSM) with digital-domain noise coupling, which reduces the number of required analog integrators.