稳健网络流量分类的数据包序列突变感知方法

Yanzhuo Jiang;Xueman Wang;Yingxu Lai;Yipeng Wang
{"title":"稳健网络流量分类的数据包序列突变感知方法","authors":"Yanzhuo Jiang;Xueman Wang;Yingxu Lai;Yipeng Wang","doi":"10.1109/LNET.2024.3435723","DOIUrl":null,"url":null,"abstract":"Anomalies in packet length sequences caused by network topology structure and congestion greatly impact the performance of early network traffic classification. Additionally, insufficient differentiation of packet length sequences using a small number of packets also affects the performance. In this letter, we propose SePeric, a packet sequence permutation-aware approach to robust network traffic classification. By exploring the correlations within packet length sequences and adjusting them to eliminate the effects of anomalous sequence orders, as well as extracting additional features from the byte sequence of the first packet to supplement the insufficient differentiation in packet length sequences.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"6 3","pages":"203-207"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Packet Sequence Permutation-Aware Approach to Robust Network Traffic Classification\",\"authors\":\"Yanzhuo Jiang;Xueman Wang;Yingxu Lai;Yipeng Wang\",\"doi\":\"10.1109/LNET.2024.3435723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomalies in packet length sequences caused by network topology structure and congestion greatly impact the performance of early network traffic classification. Additionally, insufficient differentiation of packet length sequences using a small number of packets also affects the performance. In this letter, we propose SePeric, a packet sequence permutation-aware approach to robust network traffic classification. By exploring the correlations within packet length sequences and adjusting them to eliminate the effects of anomalous sequence orders, as well as extracting additional features from the byte sequence of the first packet to supplement the insufficient differentiation in packet length sequences.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"6 3\",\"pages\":\"203-207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10614388/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10614388/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络拓扑结构和拥塞导致的数据包长度序列异常会极大地影响早期网络流量分类的性能。此外,使用少量数据包对数据包长度序列区分不足也会影响性能。在这封信中,我们提出了一种用于稳健网络流量分类的数据包序列变异感知方法 SePeric。通过探索数据包长度序列内的相关性,并对其进行调整以消除异常序列顺序的影响,以及从第一个数据包的字节序列中提取额外的特征来补充数据包长度序列区分度不足的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Packet Sequence Permutation-Aware Approach to Robust Network Traffic Classification
Anomalies in packet length sequences caused by network topology structure and congestion greatly impact the performance of early network traffic classification. Additionally, insufficient differentiation of packet length sequences using a small number of packets also affects the performance. In this letter, we propose SePeric, a packet sequence permutation-aware approach to robust network traffic classification. By exploring the correlations within packet length sequences and adjusting them to eliminate the effects of anomalous sequence orders, as well as extracting additional features from the byte sequence of the first packet to supplement the insufficient differentiation in packet length sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信