通过可解释人工智能对分布式入侵检测系统应用联盟学习的评估

Ayaka Oki;Yukio Ogawa;Kaoru Ota;Mianxiong Dong
{"title":"通过可解释人工智能对分布式入侵检测系统应用联盟学习的评估","authors":"Ayaka Oki;Yukio Ogawa;Kaoru Ota;Mianxiong Dong","doi":"10.1109/LNET.2024.3465516","DOIUrl":null,"url":null,"abstract":"We apply federated learning (FL) to a distributed intrusion detection system (IDS), in which we deploy numerous detection servers on the edge of a network. FL can mitigate the impact of decreased training data in each server and exhibit almost the same detection rate as that of the non-distributed IDS for all attack classes. We verify the effect of FL using explainable artificial intelligence (XAI); this effect is demonstrated by the distance between the feature set of each attack class in the distributed IDS and that in the non-distributed IDS. The distance increases for independent learning and decreases for FL.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"6 3","pages":"198-202"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Applying Federated Learning to Distributed Intrusion Detection Systems Through Explainable AI\",\"authors\":\"Ayaka Oki;Yukio Ogawa;Kaoru Ota;Mianxiong Dong\",\"doi\":\"10.1109/LNET.2024.3465516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply federated learning (FL) to a distributed intrusion detection system (IDS), in which we deploy numerous detection servers on the edge of a network. FL can mitigate the impact of decreased training data in each server and exhibit almost the same detection rate as that of the non-distributed IDS for all attack classes. We verify the effect of FL using explainable artificial intelligence (XAI); this effect is demonstrated by the distance between the feature set of each attack class in the distributed IDS and that in the non-distributed IDS. The distance increases for independent learning and decreases for FL.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"6 3\",\"pages\":\"198-202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10685528/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10685528/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将联合学习(FL)应用于分布式入侵检测系统(IDS),在该系统中,我们在网络边缘部署了许多检测服务器。联合学习可以减轻每个服务器中训练数据减少的影响,并在所有攻击类别中表现出与非分布式 IDS 几乎相同的检测率。我们使用可解释人工智能(XAI)验证了 FL 的效果;分布式 IDS 中每个攻击类别的特征集与非分布式 IDS 中的特征集之间的距离证明了这种效果。在独立学习的情况下,距离会增大,而在 FL 的情况下,距离会减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Applying Federated Learning to Distributed Intrusion Detection Systems Through Explainable AI
We apply federated learning (FL) to a distributed intrusion detection system (IDS), in which we deploy numerous detection servers on the edge of a network. FL can mitigate the impact of decreased training data in each server and exhibit almost the same detection rate as that of the non-distributed IDS for all attack classes. We verify the effect of FL using explainable artificial intelligence (XAI); this effect is demonstrated by the distance between the feature set of each attack class in the distributed IDS and that in the non-distributed IDS. The distance increases for independent learning and decreases for FL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信