Stavros P. Filippidis;Theodoros Theodoulidis;Aggelos S. Bouhouras;Antonio Morandi;Georgios C. Christoforidis
{"title":"设计具有真正 HTS 磁带几何形状的超导螺线管磁铁和线圈的定制有限元法框架","authors":"Stavros P. Filippidis;Theodoros Theodoulidis;Aggelos S. Bouhouras;Antonio Morandi;Georgios C. Christoforidis","doi":"10.1109/TASC.2024.3475949","DOIUrl":null,"url":null,"abstract":"Superconducting solenoidal magnets are employed in magnetic resonance imaging and superconducting magnetic energy storage systems. Numerical methods are mandatory to optimize their design and predict their performance. Implementing the finite-element method (FEM) on the actual geometry of a high-temperature superconductor (HTS) tape is challenging due to the large aspect ratio of the tape, which creates meshing difficulties. In this article, we address this challenge by developing a custom FEM framework tailored specifically for this application, with a focus on speed and easy integration into optimization algorithms. A novel approach is adopted, representing the geometry of a coil-turn of HTS tape using a single point on the 2D plane. Each point corresponds to a matrix, serving both as an algebraic storage medium and the geometrical representation of the tape. The matrix cells possess imaginary dimensions that form the geometry of the coil-turn, eliminating the need for traditional meshing. The code of the framework is optimized to increase efficiency and utilize multiple cores of the processor. Results are compared with those obtained from COMSOL, verifying the framework's accuracy. A large magnet is designed to assess the computation efficiency. The successful application of this custom FEM framework in optimization routines opens new pathways for designing and predicting the performance of superconducting solenoidal magnets.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"34 9","pages":"1-11"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Custom Finite-Element Method Framework for Designing Superconducting Solenoidal Magnets and Coils With True HTS Tape Geometry\",\"authors\":\"Stavros P. Filippidis;Theodoros Theodoulidis;Aggelos S. Bouhouras;Antonio Morandi;Georgios C. Christoforidis\",\"doi\":\"10.1109/TASC.2024.3475949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superconducting solenoidal magnets are employed in magnetic resonance imaging and superconducting magnetic energy storage systems. Numerical methods are mandatory to optimize their design and predict their performance. Implementing the finite-element method (FEM) on the actual geometry of a high-temperature superconductor (HTS) tape is challenging due to the large aspect ratio of the tape, which creates meshing difficulties. In this article, we address this challenge by developing a custom FEM framework tailored specifically for this application, with a focus on speed and easy integration into optimization algorithms. A novel approach is adopted, representing the geometry of a coil-turn of HTS tape using a single point on the 2D plane. Each point corresponds to a matrix, serving both as an algebraic storage medium and the geometrical representation of the tape. The matrix cells possess imaginary dimensions that form the geometry of the coil-turn, eliminating the need for traditional meshing. The code of the framework is optimized to increase efficiency and utilize multiple cores of the processor. Results are compared with those obtained from COMSOL, verifying the framework's accuracy. A large magnet is designed to assess the computation efficiency. The successful application of this custom FEM framework in optimization routines opens new pathways for designing and predicting the performance of superconducting solenoidal magnets.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"34 9\",\"pages\":\"1-11\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706922/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10706922/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Custom Finite-Element Method Framework for Designing Superconducting Solenoidal Magnets and Coils With True HTS Tape Geometry
Superconducting solenoidal magnets are employed in magnetic resonance imaging and superconducting magnetic energy storage systems. Numerical methods are mandatory to optimize their design and predict their performance. Implementing the finite-element method (FEM) on the actual geometry of a high-temperature superconductor (HTS) tape is challenging due to the large aspect ratio of the tape, which creates meshing difficulties. In this article, we address this challenge by developing a custom FEM framework tailored specifically for this application, with a focus on speed and easy integration into optimization algorithms. A novel approach is adopted, representing the geometry of a coil-turn of HTS tape using a single point on the 2D plane. Each point corresponds to a matrix, serving both as an algebraic storage medium and the geometrical representation of the tape. The matrix cells possess imaginary dimensions that form the geometry of the coil-turn, eliminating the need for traditional meshing. The code of the framework is optimized to increase efficiency and utilize multiple cores of the processor. Results are compared with those obtained from COMSOL, verifying the framework's accuracy. A large magnet is designed to assess the computation efficiency. The successful application of this custom FEM framework in optimization routines opens new pathways for designing and predicting the performance of superconducting solenoidal magnets.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.