可极化连续模型和格林函数 GW 形式主义:溶剂电子动力学

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Ivan Duchemin*, David Amblard and Xavier Blase*, 
{"title":"可极化连续模型和格林函数 GW 形式主义:溶剂电子动力学","authors":"Ivan Duchemin*,&nbsp;David Amblard and Xavier Blase*,&nbsp;","doi":"10.1021/acs.jctc.4c0074510.1021/acs.jctc.4c00745","DOIUrl":null,"url":null,"abstract":"<p >The many-body <i>GW</i> formalism, for the calculation of ionization potentials or electronic affinities, relies on the frequency-dependent dielectric function built from the electronic degrees of freedom. Considering the case of water as a solvent treated within the polarizable continuum model, we explore the impact of restricting the full frequency-dependence of the solvent electronic dielectric response to a frequency-independent (ϵ<sub>∞</sub>) optical dielectric constant. For solutes presenting small to large highest-occupied to lowest-unoccupied molecular orbital energy gaps, we show that such a restriction induces errors no larger than a few percent on the energy level shifts from the gas to the solvated phase. We further introduce a remarkably accurate single-pole model for mimicking the effect of the full frequency dependence of the water dielectric function in the visible–UV range. This allows a fully dynamical embedded <i>GW</i> calculation with the only knowledge of the cavity reaction field calculated for the ϵ<sub>∞</sub> optical dielectric constant.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"20 20","pages":"9072–9083 9072–9083"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarizable Continuum Models and Green’s Function GW Formalism: On the Dynamics of the Solvent Electrons\",\"authors\":\"Ivan Duchemin*,&nbsp;David Amblard and Xavier Blase*,&nbsp;\",\"doi\":\"10.1021/acs.jctc.4c0074510.1021/acs.jctc.4c00745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The many-body <i>GW</i> formalism, for the calculation of ionization potentials or electronic affinities, relies on the frequency-dependent dielectric function built from the electronic degrees of freedom. Considering the case of water as a solvent treated within the polarizable continuum model, we explore the impact of restricting the full frequency-dependence of the solvent electronic dielectric response to a frequency-independent (ϵ<sub>∞</sub>) optical dielectric constant. For solutes presenting small to large highest-occupied to lowest-unoccupied molecular orbital energy gaps, we show that such a restriction induces errors no larger than a few percent on the energy level shifts from the gas to the solvated phase. We further introduce a remarkably accurate single-pole model for mimicking the effect of the full frequency dependence of the water dielectric function in the visible–UV range. This allows a fully dynamical embedded <i>GW</i> calculation with the only knowledge of the cavity reaction field calculated for the ϵ<sub>∞</sub> optical dielectric constant.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"20 20\",\"pages\":\"9072–9083 9072–9083\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jctc.4c00745\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.4c00745","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

用于计算电离势或电子亲和力的多体 GW 形式依赖于由电子自由度建立的频率相关介电函数。考虑到在可极化连续体模型中将水作为溶剂处理的情况,我们探讨了将溶剂电子介电响应的全频率依赖性限制为与频率无关的(ϵ∞)光学介电常数的影响。对于从最高占位到最低未占位分子轨道能隙从大到小的溶质,我们的研究表明,这种限制对从气体相到溶质相的能级移动产生的误差不会超过百分之几。我们进一步引入了一个非常精确的单极模型,用于模拟可见紫外范围内水介电常数的全频依赖效应。这样,只需知道根据ϵ∞ 光学介电常数计算出的空穴反应场,就能进行完全动态的嵌入式 GW 计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polarizable Continuum Models and Green’s Function GW Formalism: On the Dynamics of the Solvent Electrons

Polarizable Continuum Models and Green’s Function GW Formalism: On the Dynamics of the Solvent Electrons

The many-body GW formalism, for the calculation of ionization potentials or electronic affinities, relies on the frequency-dependent dielectric function built from the electronic degrees of freedom. Considering the case of water as a solvent treated within the polarizable continuum model, we explore the impact of restricting the full frequency-dependence of the solvent electronic dielectric response to a frequency-independent (ϵ) optical dielectric constant. For solutes presenting small to large highest-occupied to lowest-unoccupied molecular orbital energy gaps, we show that such a restriction induces errors no larger than a few percent on the energy level shifts from the gas to the solvated phase. We further introduce a remarkably accurate single-pole model for mimicking the effect of the full frequency dependence of the water dielectric function in the visible–UV range. This allows a fully dynamical embedded GW calculation with the only knowledge of the cavity reaction field calculated for the ϵ optical dielectric constant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信