反透镜相间工程实现了无枝晶石榴石固态电解质

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yinjie Fu, Guihong Mao, Tiezhu Xu, Tengyu Yao, Duo Chen and Laifa Shen*, 
{"title":"反透镜相间工程实现了无枝晶石榴石固态电解质","authors":"Yinjie Fu,&nbsp;Guihong Mao,&nbsp;Tiezhu Xu,&nbsp;Tengyu Yao,&nbsp;Duo Chen and Laifa Shen*,&nbsp;","doi":"10.1021/acssuschemeng.4c0660210.1021/acssuschemeng.4c06602","DOIUrl":null,"url":null,"abstract":"<p >Garnet-type Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) is widely regarded as one of the most promising solid-state electrolytes due to its high ionic conductivity and chemical stability. However, the in-compact structure with voids between LLZO particles causes high resistance, significantly limiting the electrochemical performance of solid-state lithium-ion batteries. Herein, we present a wet chemical method combined with vacuum sintering for melt-injecting the low melting point anti-perovskite Li<sub>2</sub>OHCl that forms in situ at the grain boundaries of LLZO via capillary. A three-dimensional Li<sup>+</sup> conduction pathway through the LLZO bulk is built to lower the interface resistance between the electrolyte and Li metal to 15.2 Ω cm<sup>–2</sup>, achieving a high total ionic conductivity of 6.2 × 10<sup>–4</sup> S cm<sup>–1</sup> at room temperature. The electron-blocking properties efficiently reduce the lithium dendrite growth during lithium plating-stripping, enabling stable cycling of Li symmetric cells for 800 h at 0.1 mA cm<sup>–2</sup> without a short circuit. LiNi<sub>0.928</sub>Co<sub>0.072</sub>O<sub>2</sub>/LLZO-OH/Li full cells exhibit excellent stability at 0.1 C for 200 cycles. This work offers a novel low temperature sintering method to develop dendrite-free LLZO electrolytes for solid-state lithium metal batteries.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"12 42","pages":"15705–15714 15705–15714"},"PeriodicalIF":7.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Perovskite Interphase Engineering Enables Dendrite-free Garnet Solid-State Electrolytes\",\"authors\":\"Yinjie Fu,&nbsp;Guihong Mao,&nbsp;Tiezhu Xu,&nbsp;Tengyu Yao,&nbsp;Duo Chen and Laifa Shen*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.4c0660210.1021/acssuschemeng.4c06602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Garnet-type Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) is widely regarded as one of the most promising solid-state electrolytes due to its high ionic conductivity and chemical stability. However, the in-compact structure with voids between LLZO particles causes high resistance, significantly limiting the electrochemical performance of solid-state lithium-ion batteries. Herein, we present a wet chemical method combined with vacuum sintering for melt-injecting the low melting point anti-perovskite Li<sub>2</sub>OHCl that forms in situ at the grain boundaries of LLZO via capillary. A three-dimensional Li<sup>+</sup> conduction pathway through the LLZO bulk is built to lower the interface resistance between the electrolyte and Li metal to 15.2 Ω cm<sup>–2</sup>, achieving a high total ionic conductivity of 6.2 × 10<sup>–4</sup> S cm<sup>–1</sup> at room temperature. The electron-blocking properties efficiently reduce the lithium dendrite growth during lithium plating-stripping, enabling stable cycling of Li symmetric cells for 800 h at 0.1 mA cm<sup>–2</sup> without a short circuit. LiNi<sub>0.928</sub>Co<sub>0.072</sub>O<sub>2</sub>/LLZO-OH/Li full cells exhibit excellent stability at 0.1 C for 200 cycles. This work offers a novel low temperature sintering method to develop dendrite-free LLZO electrolytes for solid-state lithium metal batteries.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"12 42\",\"pages\":\"15705–15714 15705–15714\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c06602\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c06602","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

石榴石型 Li7La3Zr2O12(LLZO)具有高离子导电性和化学稳定性,被广泛认为是最有前途的固态电解质之一。然而,LLZO 颗粒之间的空隙造成的不紧凑结构会产生高电阻,从而大大限制了固态锂离子电池的电化学性能。在此,我们提出了一种湿化学方法,结合真空烧结,熔融注入低熔点反超晶石 Li2OHCl,通过毛细管在 LLZO 晶界原位形成。通过在 LLZO 体中建立三维 Li+ 传导通道,可将电解质与金属锂之间的界面电阻降至 15.2 Ω cm-2,从而在室温下实现 6.2 × 10-4 S cm-1 的高总离子电导率。电子阻断特性有效地减少了锂电镀剥离过程中锂枝晶的生长,使锂离子对称电池能在 0.1 mA cm-2 下稳定循环 800 小时而不会发生短路。LiNi0.928Co0.072O2/LLZO-OH/Li 全电池在 0.1 C 下循环 200 次后表现出卓越的稳定性。这项研究提供了一种新颖的低温烧结方法,用于开发固态锂金属电池的无树枝状晶粒 LLZO 电解质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anti-Perovskite Interphase Engineering Enables Dendrite-free Garnet Solid-State Electrolytes

Anti-Perovskite Interphase Engineering Enables Dendrite-free Garnet Solid-State Electrolytes

Garnet-type Li7La3Zr2O12 (LLZO) is widely regarded as one of the most promising solid-state electrolytes due to its high ionic conductivity and chemical stability. However, the in-compact structure with voids between LLZO particles causes high resistance, significantly limiting the electrochemical performance of solid-state lithium-ion batteries. Herein, we present a wet chemical method combined with vacuum sintering for melt-injecting the low melting point anti-perovskite Li2OHCl that forms in situ at the grain boundaries of LLZO via capillary. A three-dimensional Li+ conduction pathway through the LLZO bulk is built to lower the interface resistance between the electrolyte and Li metal to 15.2 Ω cm–2, achieving a high total ionic conductivity of 6.2 × 10–4 S cm–1 at room temperature. The electron-blocking properties efficiently reduce the lithium dendrite growth during lithium plating-stripping, enabling stable cycling of Li symmetric cells for 800 h at 0.1 mA cm–2 without a short circuit. LiNi0.928Co0.072O2/LLZO-OH/Li full cells exhibit excellent stability at 0.1 C for 200 cycles. This work offers a novel low temperature sintering method to develop dendrite-free LLZO electrolytes for solid-state lithium metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信