生物质衍生全彩碳点的改性策略及其在具有超高 CRI-96.2 的暖白光发光二极管中的应用

Haozhe Wang, Xilang Jin*, Yuchen He, Haiyan Bai, Liyuan Ma, Lihang Zhao, Liu Ding, Hongwei Zhou, Qingfa Si and Weixing Chen*, 
{"title":"生物质衍生全彩碳点的改性策略及其在具有超高 CRI-96.2 的暖白光发光二极管中的应用","authors":"Haozhe Wang,&nbsp;Xilang Jin*,&nbsp;Yuchen He,&nbsp;Haiyan Bai,&nbsp;Liyuan Ma,&nbsp;Lihang Zhao,&nbsp;Liu Ding,&nbsp;Hongwei Zhou,&nbsp;Qingfa Si and Weixing Chen*,&nbsp;","doi":"10.1021/acssusresmgt.4c0029810.1021/acssusresmgt.4c00298","DOIUrl":null,"url":null,"abstract":"<p >The white light-emitting diode (W-LED) is a new generation of lighting devices, and its key technology is light-emitting materials. Biomass-derived carbon dots (CDs) are expected to be favorable candidates for a new generation of environmentally friendly fluorescent materials. However, the insufficient absolute photoluminescence quantum yield (PLQY) and lack of effective emission bands of most biomass-derived CDs limit their further applications. Herein, Defatted Sichuan pepper seed, an inexpensive biowaste, was used for the raw materials of fluorescent CDs. The preparation of highly efficient panchromatic (415–650 nm) CDs by a simple one-step solvothermal method were reported. Defatted Sichuan pepper seed biowaste was used as a carbon source, and 1,4-dihydroxynaphthalene was used as a modifier to modulate the formation of conjugated domains in CDs, and the surface structures of CDs were modified in different solvents. Meanwhile, optical trichromatic CDs with high absolute PLQY (blue CDs: 82%, green CDs: 62%, and red CDs: 48%) were selected for characterization and analysis and further mixed to prepare white CDs (W-CDs). Then, the W-CDs were embedded in starch and a PVP matrix to construct solid phosphors with excellent photoluminescence (PL) thermal stability and resistance to photobleaching. The phosphors can be used as color conversion layers for light-emitting diodes (LEDs). The final packages realized blue LED (B-LED), green LED (G-LED), red LED (R-LED), and warm W-LEDs. What’s more, the R-LED shows a high color purity of 93.7%, and the W-LED exhibits a high color rendering index (CRI) of 96.2, with a color coordinate (CIE) of (0.40, 0.39). This work provides a new way for exploring biomass-derived high-efficiency CDs to build low-cost, high-performance, and environmentally friendly LED devices.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"1 10","pages":"2255–2265 2255–2265"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Modification Strategy of Biomass-Derived Full-Color Carbon Dots and Its Applications to Warm White Light-Emitting Diodes with Ultra-High CRI-96.2\",\"authors\":\"Haozhe Wang,&nbsp;Xilang Jin*,&nbsp;Yuchen He,&nbsp;Haiyan Bai,&nbsp;Liyuan Ma,&nbsp;Lihang Zhao,&nbsp;Liu Ding,&nbsp;Hongwei Zhou,&nbsp;Qingfa Si and Weixing Chen*,&nbsp;\",\"doi\":\"10.1021/acssusresmgt.4c0029810.1021/acssusresmgt.4c00298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The white light-emitting diode (W-LED) is a new generation of lighting devices, and its key technology is light-emitting materials. Biomass-derived carbon dots (CDs) are expected to be favorable candidates for a new generation of environmentally friendly fluorescent materials. However, the insufficient absolute photoluminescence quantum yield (PLQY) and lack of effective emission bands of most biomass-derived CDs limit their further applications. Herein, Defatted Sichuan pepper seed, an inexpensive biowaste, was used for the raw materials of fluorescent CDs. The preparation of highly efficient panchromatic (415–650 nm) CDs by a simple one-step solvothermal method were reported. Defatted Sichuan pepper seed biowaste was used as a carbon source, and 1,4-dihydroxynaphthalene was used as a modifier to modulate the formation of conjugated domains in CDs, and the surface structures of CDs were modified in different solvents. Meanwhile, optical trichromatic CDs with high absolute PLQY (blue CDs: 82%, green CDs: 62%, and red CDs: 48%) were selected for characterization and analysis and further mixed to prepare white CDs (W-CDs). Then, the W-CDs were embedded in starch and a PVP matrix to construct solid phosphors with excellent photoluminescence (PL) thermal stability and resistance to photobleaching. The phosphors can be used as color conversion layers for light-emitting diodes (LEDs). The final packages realized blue LED (B-LED), green LED (G-LED), red LED (R-LED), and warm W-LEDs. What’s more, the R-LED shows a high color purity of 93.7%, and the W-LED exhibits a high color rendering index (CRI) of 96.2, with a color coordinate (CIE) of (0.40, 0.39). This work provides a new way for exploring biomass-derived high-efficiency CDs to build low-cost, high-performance, and environmentally friendly LED devices.</p>\",\"PeriodicalId\":100015,\"journal\":{\"name\":\"ACS Sustainable Resource Management\",\"volume\":\"1 10\",\"pages\":\"2255–2265 2255–2265\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Resource Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

白光发光二极管(W-LED)是新一代照明设备,其关键技术是发光材料。从生物质中提取的碳点有望成为新一代环保型荧光材料的理想候选材料。然而,大多数生物质衍生碳点的绝对光致发光量子产率(PLQY)不足,且缺乏有效的发射带,这限制了它们的进一步应用。本文以一种廉价的生物废弃物--脱脂花椒种子为原料,制备了高效的泛色荧光材料。报告采用简单的一步溶热法制备了高效的全色(415-650 nm)CD。该方法以脱脂花椒籽生物废料为碳源,以1,4-二羟基萘为改性剂,调控CD中共轭结构域的形成,并在不同溶剂中对CD的表面结构进行改性。同时,选择绝对 PLQY 值较高的光学三基色光盘(蓝光光盘:82%,绿光光盘:62%,红光光盘:48%)进行表征和分析,并进一步混合制备白光光盘(W-CDs)。然后,将 W-CD 嵌入淀粉和 PVP 基质中,制备出具有优异光致发光(PL)热稳定性和抗光漂白性的固体荧光粉。这种荧光粉可用作发光二极管(LED)的颜色转换层。最终的封装实现了蓝色 LED (B-LED)、绿色 LED (G-LED)、红色 LED (R-LED) 和暖色 W-LED 的应用。此外,R-LED 的色纯度高达 93.7%,W-LED 的显色指数(CRI)高达 96.2,色坐标(CIE)为(0.40,0.39)。这项工作为探索生物质衍生的高效 CD 提供了一条新途径,可用于制造低成本、高性能和环保的 LED 设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Modification Strategy of Biomass-Derived Full-Color Carbon Dots and Its Applications to Warm White Light-Emitting Diodes with Ultra-High CRI-96.2

The Modification Strategy of Biomass-Derived Full-Color Carbon Dots and Its Applications to Warm White Light-Emitting Diodes with Ultra-High CRI-96.2

The white light-emitting diode (W-LED) is a new generation of lighting devices, and its key technology is light-emitting materials. Biomass-derived carbon dots (CDs) are expected to be favorable candidates for a new generation of environmentally friendly fluorescent materials. However, the insufficient absolute photoluminescence quantum yield (PLQY) and lack of effective emission bands of most biomass-derived CDs limit their further applications. Herein, Defatted Sichuan pepper seed, an inexpensive biowaste, was used for the raw materials of fluorescent CDs. The preparation of highly efficient panchromatic (415–650 nm) CDs by a simple one-step solvothermal method were reported. Defatted Sichuan pepper seed biowaste was used as a carbon source, and 1,4-dihydroxynaphthalene was used as a modifier to modulate the formation of conjugated domains in CDs, and the surface structures of CDs were modified in different solvents. Meanwhile, optical trichromatic CDs with high absolute PLQY (blue CDs: 82%, green CDs: 62%, and red CDs: 48%) were selected for characterization and analysis and further mixed to prepare white CDs (W-CDs). Then, the W-CDs were embedded in starch and a PVP matrix to construct solid phosphors with excellent photoluminescence (PL) thermal stability and resistance to photobleaching. The phosphors can be used as color conversion layers for light-emitting diodes (LEDs). The final packages realized blue LED (B-LED), green LED (G-LED), red LED (R-LED), and warm W-LEDs. What’s more, the R-LED shows a high color purity of 93.7%, and the W-LED exhibits a high color rendering index (CRI) of 96.2, with a color coordinate (CIE) of (0.40, 0.39). This work provides a new way for exploring biomass-derived high-efficiency CDs to build low-cost, high-performance, and environmentally friendly LED devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信