{"title":"原位合成唑基咪唑酸盐框架-11@氧化锌异质结构以增强抗菌活性和生物活性","authors":"Xuegang Zhang, Lixue Yang*, Fei Chen, Yinzhou Yan, Yiqiang Li, You Zhang, Ying Ma, Hancheng Wan, Zhe Xue and Qiang Wang*, ","doi":"10.1021/acs.chemmater.4c0219910.1021/acs.chemmater.4c02199","DOIUrl":null,"url":null,"abstract":"<p >Storage and transportation are critical processes that significantly affect food quality, with bacterial proliferation serving as a major contributor to deterioration. Preservative films are commonly used in food transportation and preservation. However, the approval process for contact-type preservative films remains challenging due to inconclusive toxicity assessments. In this work, we synthesized antimicrobial zeolitic imidazolate frameworks (ZIFs) with ZnO microtube heterostructures (ZZHs) for contactless biological preservation using the optical vapor phase supersaturated precipitation (OVSP) method, combined with an in situ solvothermal approach. This ZZH exhibited excellent antimicrobial activity and achieved efficiencies of 90.47% and 98.24% against <i>E. coli</i> and <i>S. aureus</i>, respectively. We also developed a highly flexible ZZH/PDMS film that demonstrated exceptional structural stability under various temperature, acid, and alkali conditions, which supported the potential for stable intrinsic antimicrobial activity. The hydrophilic nature and high specific surface area of the ZZH/PDMS film were beneficial to capture the dispersed water vapor, bacteria, and other harmful substances, which enhanced the efficiency of the antimicrobial functional sites. This strategy indirectly inhibited bacterial proliferation by controlling ambient humidity, thus avoiding direct contact between the film and the fruit. This process was defined as a contactless mechanism. This work offers an avenue for the development of highly flexible and durable antimicrobial heterostructure agents for contactless biological preservation in future applications.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"36 20","pages":"10285–10294 10285–10294"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ Synthesis of Zeolitic Imidazolate Framework-11@ZnO Heterostructures for Enhanced Antimicrobial Activity and Biological Preservation\",\"authors\":\"Xuegang Zhang, Lixue Yang*, Fei Chen, Yinzhou Yan, Yiqiang Li, You Zhang, Ying Ma, Hancheng Wan, Zhe Xue and Qiang Wang*, \",\"doi\":\"10.1021/acs.chemmater.4c0219910.1021/acs.chemmater.4c02199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Storage and transportation are critical processes that significantly affect food quality, with bacterial proliferation serving as a major contributor to deterioration. Preservative films are commonly used in food transportation and preservation. However, the approval process for contact-type preservative films remains challenging due to inconclusive toxicity assessments. In this work, we synthesized antimicrobial zeolitic imidazolate frameworks (ZIFs) with ZnO microtube heterostructures (ZZHs) for contactless biological preservation using the optical vapor phase supersaturated precipitation (OVSP) method, combined with an in situ solvothermal approach. This ZZH exhibited excellent antimicrobial activity and achieved efficiencies of 90.47% and 98.24% against <i>E. coli</i> and <i>S. aureus</i>, respectively. We also developed a highly flexible ZZH/PDMS film that demonstrated exceptional structural stability under various temperature, acid, and alkali conditions, which supported the potential for stable intrinsic antimicrobial activity. The hydrophilic nature and high specific surface area of the ZZH/PDMS film were beneficial to capture the dispersed water vapor, bacteria, and other harmful substances, which enhanced the efficiency of the antimicrobial functional sites. This strategy indirectly inhibited bacterial proliferation by controlling ambient humidity, thus avoiding direct contact between the film and the fruit. This process was defined as a contactless mechanism. This work offers an avenue for the development of highly flexible and durable antimicrobial heterostructure agents for contactless biological preservation in future applications.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"36 20\",\"pages\":\"10285–10294 10285–10294\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02199\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02199","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In situ Synthesis of Zeolitic Imidazolate Framework-11@ZnO Heterostructures for Enhanced Antimicrobial Activity and Biological Preservation
Storage and transportation are critical processes that significantly affect food quality, with bacterial proliferation serving as a major contributor to deterioration. Preservative films are commonly used in food transportation and preservation. However, the approval process for contact-type preservative films remains challenging due to inconclusive toxicity assessments. In this work, we synthesized antimicrobial zeolitic imidazolate frameworks (ZIFs) with ZnO microtube heterostructures (ZZHs) for contactless biological preservation using the optical vapor phase supersaturated precipitation (OVSP) method, combined with an in situ solvothermal approach. This ZZH exhibited excellent antimicrobial activity and achieved efficiencies of 90.47% and 98.24% against E. coli and S. aureus, respectively. We also developed a highly flexible ZZH/PDMS film that demonstrated exceptional structural stability under various temperature, acid, and alkali conditions, which supported the potential for stable intrinsic antimicrobial activity. The hydrophilic nature and high specific surface area of the ZZH/PDMS film were beneficial to capture the dispersed water vapor, bacteria, and other harmful substances, which enhanced the efficiency of the antimicrobial functional sites. This strategy indirectly inhibited bacterial proliferation by controlling ambient humidity, thus avoiding direct contact between the film and the fruit. This process was defined as a contactless mechanism. This work offers an avenue for the development of highly flexible and durable antimicrobial heterostructure agents for contactless biological preservation in future applications.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.