Yupeng Yang, Mohammad Hadi Khaksaran, Jong Bin An, Sujin Lee, Hyun Jae Kim, Ted Johansson, Xi Lu, Ilya Sychugov, Apurba Dev and Shi-Li Zhang*,
{"title":"用于可见光范围内特定分子检测的工程 InGaZnO 沟道光电晶体管","authors":"Yupeng Yang, Mohammad Hadi Khaksaran, Jong Bin An, Sujin Lee, Hyun Jae Kim, Ted Johansson, Xi Lu, Ilya Sychugov, Apurba Dev and Shi-Li Zhang*, ","doi":"10.1021/acsaom.4c0031010.1021/acsaom.4c00310","DOIUrl":null,"url":null,"abstract":"<p >Fluorescence-based single-molecule detection has been widely investigated and applied in biosensing and bioimaging due to its ultrahigh sensitivity and specificity. However, bulky and expensive commercial fluorescence microscopes are usually required. The Stokes shift property of most commonly used fluorophores requires optical sets such as dichroic mirrors and specific filters in the optical pathway before a photodetector to eliminate excitation and scattering lights from the fluorescence signals. The fluorescence signal collected by an objective is further unavoidably attenuated, and the optical resolution is diffraction-limited. Herein, a proof of concept of a lab-on-a-chip compatible molecular sensor is shown by integrating upconversion nanoparticles (UCNPs) and amorphous hydrogen-doped InGaZnO (InGaZnO:H) thin-film phototransistor (IGZO:H TFTs) aiming to alleviate those issues. Upon illumination with a 980 nm infrared light, the phototransistor shows no photocurrent without UCNPs but yields a high photocurrent with UV–visible fluorescent light emitted from the UCNPs. The molecular detection is enabled by further involving the Förster resonance energy transfer (FRET) mechanism, with the UCNPs as donors. The photocurrent falls back to its original low level when biotinylated gold nanoparticles are added to selectively bind and quench the UCNPs via biotin–streptavidin coupling. Each UCNP shows an estimated photocurrent-to-dark current ratio of 10<sup>3</sup> and each biotinylated gold nanoparticle causes at least 1 order of magnitude decrease of the photocurrent. Our integrated setup presents a promising platform for further development toward an optoelectronic biosensor capable of single-molecule detection.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"2 10","pages":"2092–2100 2092–2100"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaom.4c00310","citationCount":"0","resultStr":"{\"title\":\"Phototransistors of Engineered InGaZnO Channel for Specific Molecular Detection in the Visible Range\",\"authors\":\"Yupeng Yang, Mohammad Hadi Khaksaran, Jong Bin An, Sujin Lee, Hyun Jae Kim, Ted Johansson, Xi Lu, Ilya Sychugov, Apurba Dev and Shi-Li Zhang*, \",\"doi\":\"10.1021/acsaom.4c0031010.1021/acsaom.4c00310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Fluorescence-based single-molecule detection has been widely investigated and applied in biosensing and bioimaging due to its ultrahigh sensitivity and specificity. However, bulky and expensive commercial fluorescence microscopes are usually required. The Stokes shift property of most commonly used fluorophores requires optical sets such as dichroic mirrors and specific filters in the optical pathway before a photodetector to eliminate excitation and scattering lights from the fluorescence signals. The fluorescence signal collected by an objective is further unavoidably attenuated, and the optical resolution is diffraction-limited. Herein, a proof of concept of a lab-on-a-chip compatible molecular sensor is shown by integrating upconversion nanoparticles (UCNPs) and amorphous hydrogen-doped InGaZnO (InGaZnO:H) thin-film phototransistor (IGZO:H TFTs) aiming to alleviate those issues. Upon illumination with a 980 nm infrared light, the phototransistor shows no photocurrent without UCNPs but yields a high photocurrent with UV–visible fluorescent light emitted from the UCNPs. The molecular detection is enabled by further involving the Förster resonance energy transfer (FRET) mechanism, with the UCNPs as donors. The photocurrent falls back to its original low level when biotinylated gold nanoparticles are added to selectively bind and quench the UCNPs via biotin–streptavidin coupling. Each UCNP shows an estimated photocurrent-to-dark current ratio of 10<sup>3</sup> and each biotinylated gold nanoparticle causes at least 1 order of magnitude decrease of the photocurrent. Our integrated setup presents a promising platform for further development toward an optoelectronic biosensor capable of single-molecule detection.</p>\",\"PeriodicalId\":29803,\"journal\":{\"name\":\"ACS Applied Optical Materials\",\"volume\":\"2 10\",\"pages\":\"2092–2100 2092–2100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsaom.4c00310\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Optical Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaom.4c00310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaom.4c00310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phototransistors of Engineered InGaZnO Channel for Specific Molecular Detection in the Visible Range
Fluorescence-based single-molecule detection has been widely investigated and applied in biosensing and bioimaging due to its ultrahigh sensitivity and specificity. However, bulky and expensive commercial fluorescence microscopes are usually required. The Stokes shift property of most commonly used fluorophores requires optical sets such as dichroic mirrors and specific filters in the optical pathway before a photodetector to eliminate excitation and scattering lights from the fluorescence signals. The fluorescence signal collected by an objective is further unavoidably attenuated, and the optical resolution is diffraction-limited. Herein, a proof of concept of a lab-on-a-chip compatible molecular sensor is shown by integrating upconversion nanoparticles (UCNPs) and amorphous hydrogen-doped InGaZnO (InGaZnO:H) thin-film phototransistor (IGZO:H TFTs) aiming to alleviate those issues. Upon illumination with a 980 nm infrared light, the phototransistor shows no photocurrent without UCNPs but yields a high photocurrent with UV–visible fluorescent light emitted from the UCNPs. The molecular detection is enabled by further involving the Förster resonance energy transfer (FRET) mechanism, with the UCNPs as donors. The photocurrent falls back to its original low level when biotinylated gold nanoparticles are added to selectively bind and quench the UCNPs via biotin–streptavidin coupling. Each UCNP shows an estimated photocurrent-to-dark current ratio of 103 and each biotinylated gold nanoparticle causes at least 1 order of magnitude decrease of the photocurrent. Our integrated setup presents a promising platform for further development toward an optoelectronic biosensor capable of single-molecule detection.
期刊介绍:
ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.