室温下观测巨型 CsPbBr3 量子点中三色子的三光子级联发射

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Miri Kazes, Dekel Nakar, Ihor Cherniukh, Maryna I. Bodnarchuk, Leon G. Feld, Chenglian Zhu, Daniel Amgar, Gabriele Rainò*, Maksym V. Kovalenko* and Dan Oron*, 
{"title":"室温下观测巨型 CsPbBr3 量子点中三色子的三光子级联发射","authors":"Miri Kazes,&nbsp;Dekel Nakar,&nbsp;Ihor Cherniukh,&nbsp;Maryna I. Bodnarchuk,&nbsp;Leon G. Feld,&nbsp;Chenglian Zhu,&nbsp;Daniel Amgar,&nbsp;Gabriele Rainò*,&nbsp;Maksym V. Kovalenko* and Dan Oron*,&nbsp;","doi":"10.1021/acs.nanolett.4c0309610.1021/acs.nanolett.4c03096","DOIUrl":null,"url":null,"abstract":"<p >Colloidal semiconductor nanocrystals have long been considered a promising source of time-correlated and entangled photons via the cascaded emission of multiexcitonic states. The spectroscopy of such cascaded emission, however, is hindered by efficient nonradiative Auger-Meitner decay, rendering multiexcitonic states nonemissive. Here we present room-temperature heralded spectroscopy of three-photon cascades from triexcitons in giant CsPbBr<sub>3</sub> nanocrystals. We show that this system exhibits second- and third-order correlation function values, g<sup>(2)</sup>(0) and g<sup>(3)</sup>(0,0), close to unity, identifying very weak binding of both biexcitons and triexcitons. Combining fluorescence lifetime analysis, photon statistics, and spectroscopy, we can readily identify emission from higher multiexcitonic states. We use this to verify emission from a single emitter despite high emission quantum yields of multiply excited states and comparable emission lifetimes of singly and multiply excited states. Finally, we present potential pathways toward control of the photon number statistics of multiexcitonic emission cascades.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 42","pages":"13185–13191 13185–13191"},"PeriodicalIF":9.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.4c03096","citationCount":"0","resultStr":"{\"title\":\"Observation of Three-Photon Cascaded Emission from Triexcitons in Giant CsPbBr3 Quantum Dots at Room Temperature\",\"authors\":\"Miri Kazes,&nbsp;Dekel Nakar,&nbsp;Ihor Cherniukh,&nbsp;Maryna I. Bodnarchuk,&nbsp;Leon G. Feld,&nbsp;Chenglian Zhu,&nbsp;Daniel Amgar,&nbsp;Gabriele Rainò*,&nbsp;Maksym V. Kovalenko* and Dan Oron*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0309610.1021/acs.nanolett.4c03096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Colloidal semiconductor nanocrystals have long been considered a promising source of time-correlated and entangled photons via the cascaded emission of multiexcitonic states. The spectroscopy of such cascaded emission, however, is hindered by efficient nonradiative Auger-Meitner decay, rendering multiexcitonic states nonemissive. Here we present room-temperature heralded spectroscopy of three-photon cascades from triexcitons in giant CsPbBr<sub>3</sub> nanocrystals. We show that this system exhibits second- and third-order correlation function values, g<sup>(2)</sup>(0) and g<sup>(3)</sup>(0,0), close to unity, identifying very weak binding of both biexcitons and triexcitons. Combining fluorescence lifetime analysis, photon statistics, and spectroscopy, we can readily identify emission from higher multiexcitonic states. We use this to verify emission from a single emitter despite high emission quantum yields of multiply excited states and comparable emission lifetimes of singly and multiply excited states. Finally, we present potential pathways toward control of the photon number statistics of multiexcitonic emission cascades.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"24 42\",\"pages\":\"13185–13191 13185–13191\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.4c03096\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c03096\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c03096","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,胶体半导体纳米晶体一直被认为是通过多协子态的级联发射获得时间相关和纠缠光子的理想来源。然而,这种级联发射的光谱分析受到高效非辐射奥杰-迈特纳衰变的阻碍,使得多协子态不具有辐射性。在这里,我们展示了在室温下对巨型铯硼硼三纳米晶体中的三外显子产生的三光子级联的预示光谱。我们的研究表明,该系统的二阶和三阶相关函数值(g(2)(0) 和 g(3)(0,0))接近于统一,表明双外显子和三外显子的结合非常微弱。结合荧光寿命分析、光子统计和光谱学,我们可以很容易地识别较高的多协子态发射。尽管多激发态的发射量子产率很高,单激发态和多激发态的发射寿命也相当,但我们还是利用这一点验证了来自单一发射体的发射。最后,我们介绍了控制多协子发射级联光子数统计的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observation of Three-Photon Cascaded Emission from Triexcitons in Giant CsPbBr3 Quantum Dots at Room Temperature

Colloidal semiconductor nanocrystals have long been considered a promising source of time-correlated and entangled photons via the cascaded emission of multiexcitonic states. The spectroscopy of such cascaded emission, however, is hindered by efficient nonradiative Auger-Meitner decay, rendering multiexcitonic states nonemissive. Here we present room-temperature heralded spectroscopy of three-photon cascades from triexcitons in giant CsPbBr3 nanocrystals. We show that this system exhibits second- and third-order correlation function values, g(2)(0) and g(3)(0,0), close to unity, identifying very weak binding of both biexcitons and triexcitons. Combining fluorescence lifetime analysis, photon statistics, and spectroscopy, we can readily identify emission from higher multiexcitonic states. We use this to verify emission from a single emitter despite high emission quantum yields of multiply excited states and comparable emission lifetimes of singly and multiply excited states. Finally, we present potential pathways toward control of the photon number statistics of multiexcitonic emission cascades.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信