Larissa Pinheiro de Souza, Isabela Matos Gaudio de Souza, Robson S. Souto, Matheus Schiavon Kronka, Bruno Ramos, Marcos R. V. Lanza, José Luís de Paiva and Antonio Carlos Silva Costa Teixeira*,
{"title":"带有不同气体扩散电极的电化学流动反应器的流体动力学,用于原位生产过氧化氢","authors":"Larissa Pinheiro de Souza, Isabela Matos Gaudio de Souza, Robson S. Souto, Matheus Schiavon Kronka, Bruno Ramos, Marcos R. V. Lanza, José Luís de Paiva and Antonio Carlos Silva Costa Teixeira*, ","doi":"10.1021/acs.iecr.4c0226410.1021/acs.iecr.4c02264","DOIUrl":null,"url":null,"abstract":"<p >This study integrates macromixing and micromixing methodologies to characterize an electrochemical reactor with a gas diffusion electrode (GDE) based on computational fluid dynamics (CFD) simulations validated by residence time distribution (RTD) data. It experimentally evaluates two types of GDEs for H<sub>2</sub>O<sub>2</sub> accumulation and uses the validated CFD model to evaluate the distribution of H<sub>2</sub>O<sub>2</sub> in the reactor. The tanks-in-series (T-I-S) model provides a qualitative understanding of the fluid’s macroscopic behavior, while the transition SST model analyzes the fluid’s microscopic dynamics and turbulence zones. The study reveals a significant convergence of current density, volumetric flow rate, and GDE type for H<sub>2</sub>O<sub>2</sub> production. The optimal experimental configuration (carbon/PTFE/fabric with <i>Q</i> = 50 L h<sup>–1</sup>) was evaluated through CFD simulations in the distribution of H<sub>2</sub>O<sub>2</sub> at different flow rates. These results improve our understanding of the hydrodynamics of the electrochemical reactor and offer prospects for optimizing the H<sub>2</sub>O<sub>2</sub> generation and accumulation processes.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"63 42","pages":"18053–18066 18053–18066"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.iecr.4c02264","citationCount":"0","resultStr":"{\"title\":\"Fluid Dynamics of an Electrochemical Flow Reactor with Different Gas Diffusion Electrodes for In Situ Hydrogen Peroxide Production\",\"authors\":\"Larissa Pinheiro de Souza, Isabela Matos Gaudio de Souza, Robson S. Souto, Matheus Schiavon Kronka, Bruno Ramos, Marcos R. V. Lanza, José Luís de Paiva and Antonio Carlos Silva Costa Teixeira*, \",\"doi\":\"10.1021/acs.iecr.4c0226410.1021/acs.iecr.4c02264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study integrates macromixing and micromixing methodologies to characterize an electrochemical reactor with a gas diffusion electrode (GDE) based on computational fluid dynamics (CFD) simulations validated by residence time distribution (RTD) data. It experimentally evaluates two types of GDEs for H<sub>2</sub>O<sub>2</sub> accumulation and uses the validated CFD model to evaluate the distribution of H<sub>2</sub>O<sub>2</sub> in the reactor. The tanks-in-series (T-I-S) model provides a qualitative understanding of the fluid’s macroscopic behavior, while the transition SST model analyzes the fluid’s microscopic dynamics and turbulence zones. The study reveals a significant convergence of current density, volumetric flow rate, and GDE type for H<sub>2</sub>O<sub>2</sub> production. The optimal experimental configuration (carbon/PTFE/fabric with <i>Q</i> = 50 L h<sup>–1</sup>) was evaluated through CFD simulations in the distribution of H<sub>2</sub>O<sub>2</sub> at different flow rates. These results improve our understanding of the hydrodynamics of the electrochemical reactor and offer prospects for optimizing the H<sub>2</sub>O<sub>2</sub> generation and accumulation processes.</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"63 42\",\"pages\":\"18053–18066 18053–18066\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.iecr.4c02264\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.4c02264\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c02264","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究基于计算流体动力学(CFD)模拟,并通过停留时间分布(RTD)数据进行验证,整合了大混合和微混合方法,以确定带有气体扩散电极(GDE)的电化学反应器的特性。它通过实验评估了两种类型的 GDE 的 H2O2 积累情况,并使用经过验证的 CFD 模型评估了反应器中 H2O2 的分布情况。串联罐(T-I-S)模型提供了对流体宏观行为的定性理解,而过渡 SST 模型则分析了流体的微观动力学和湍流区。研究表明,H2O2 生产的电流密度、容积流量和 GDE 类型有明显的趋同性。通过对不同流速下 H2O2 的分布进行 CFD 模拟,评估了最佳实验配置(碳/PTFE/织物,Q = 50 L h-1)。这些结果加深了我们对电化学反应器流体力学的理解,为优化 H2O2 生成和积累过程提供了前景。
Fluid Dynamics of an Electrochemical Flow Reactor with Different Gas Diffusion Electrodes for In Situ Hydrogen Peroxide Production
This study integrates macromixing and micromixing methodologies to characterize an electrochemical reactor with a gas diffusion electrode (GDE) based on computational fluid dynamics (CFD) simulations validated by residence time distribution (RTD) data. It experimentally evaluates two types of GDEs for H2O2 accumulation and uses the validated CFD model to evaluate the distribution of H2O2 in the reactor. The tanks-in-series (T-I-S) model provides a qualitative understanding of the fluid’s macroscopic behavior, while the transition SST model analyzes the fluid’s microscopic dynamics and turbulence zones. The study reveals a significant convergence of current density, volumetric flow rate, and GDE type for H2O2 production. The optimal experimental configuration (carbon/PTFE/fabric with Q = 50 L h–1) was evaluated through CFD simulations in the distribution of H2O2 at different flow rates. These results improve our understanding of the hydrodynamics of the electrochemical reactor and offer prospects for optimizing the H2O2 generation and accumulation processes.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.