Eva Almeida, Miguel Alexandre, Ivan M. Santos, Rodrigo Martins, Hugo Águas* and Manuel J. Mendes*,
{"title":"光子增强型 Perovskite 太阳能电池:定制颜色和光捕捉","authors":"Eva Almeida, Miguel Alexandre, Ivan M. Santos, Rodrigo Martins, Hugo Águas* and Manuel J. Mendes*, ","doi":"10.1021/acsomega.4c0497910.1021/acsomega.4c04979","DOIUrl":null,"url":null,"abstract":"<p >The current exponential growth of solar electricity technologies toward consumer-oriented applications, as in building- or vehicle-integrated photovoltaics (B/VIPV), is calling for improved solar cells, not only in cost-effectiveness, but also with better adaptability and aesthetics. Here, using perovskite solar cells (PSCs) as test bed, we demonstrate an unprecedented photonic method to generate any color on a cell layout, while also increasing PV efficiency. To this end, photonic surface features were designed for PSCs, which filled the dual purpose of light-trapping (LT) and modulation of reflected light interference. A variety of geometries, from simple gratings to complex semispheroids, were optically optimized for two of the most challenging colors, magenta and green, while assuring the generation of their maximum feasible photocurrent. The best results corresponded to a current density of 22.07 mA/cm<sup>2</sup>, obtained for the magenta solar cell with top domes, exhibiting an increase of 6.68%, relative to an optimized planar reference cell. In turn, the same type of geometry was able to generate the leading green cell, with up to 21.40 mA/cm<sup>2</sup> (a relative increase of 3.44%). Additionally, the uniformity of the optical output of the optimal solar cells was tested under a range of incident light angles, between 0<sup>◦</sup> and 60<sup>◦</sup>, where the current density suffered relative losses only down to 6.65%.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 42","pages":"42839–42849 42839–42849"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c04979","citationCount":"0","resultStr":"{\"title\":\"Photonic-Enhanced Perovskite Solar Cells: Tailoring Color and Light Capture\",\"authors\":\"Eva Almeida, Miguel Alexandre, Ivan M. Santos, Rodrigo Martins, Hugo Águas* and Manuel J. Mendes*, \",\"doi\":\"10.1021/acsomega.4c0497910.1021/acsomega.4c04979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The current exponential growth of solar electricity technologies toward consumer-oriented applications, as in building- or vehicle-integrated photovoltaics (B/VIPV), is calling for improved solar cells, not only in cost-effectiveness, but also with better adaptability and aesthetics. Here, using perovskite solar cells (PSCs) as test bed, we demonstrate an unprecedented photonic method to generate any color on a cell layout, while also increasing PV efficiency. To this end, photonic surface features were designed for PSCs, which filled the dual purpose of light-trapping (LT) and modulation of reflected light interference. A variety of geometries, from simple gratings to complex semispheroids, were optically optimized for two of the most challenging colors, magenta and green, while assuring the generation of their maximum feasible photocurrent. The best results corresponded to a current density of 22.07 mA/cm<sup>2</sup>, obtained for the magenta solar cell with top domes, exhibiting an increase of 6.68%, relative to an optimized planar reference cell. In turn, the same type of geometry was able to generate the leading green cell, with up to 21.40 mA/cm<sup>2</sup> (a relative increase of 3.44%). Additionally, the uniformity of the optical output of the optimal solar cells was tested under a range of incident light angles, between 0<sup>◦</sup> and 60<sup>◦</sup>, where the current density suffered relative losses only down to 6.65%.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 42\",\"pages\":\"42839–42849 42839–42849\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c04979\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c04979\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c04979","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Photonic-Enhanced Perovskite Solar Cells: Tailoring Color and Light Capture
The current exponential growth of solar electricity technologies toward consumer-oriented applications, as in building- or vehicle-integrated photovoltaics (B/VIPV), is calling for improved solar cells, not only in cost-effectiveness, but also with better adaptability and aesthetics. Here, using perovskite solar cells (PSCs) as test bed, we demonstrate an unprecedented photonic method to generate any color on a cell layout, while also increasing PV efficiency. To this end, photonic surface features were designed for PSCs, which filled the dual purpose of light-trapping (LT) and modulation of reflected light interference. A variety of geometries, from simple gratings to complex semispheroids, were optically optimized for two of the most challenging colors, magenta and green, while assuring the generation of their maximum feasible photocurrent. The best results corresponded to a current density of 22.07 mA/cm2, obtained for the magenta solar cell with top domes, exhibiting an increase of 6.68%, relative to an optimized planar reference cell. In turn, the same type of geometry was able to generate the leading green cell, with up to 21.40 mA/cm2 (a relative increase of 3.44%). Additionally, the uniformity of the optical output of the optimal solar cells was tested under a range of incident light angles, between 0◦ and 60◦, where the current density suffered relative losses only down to 6.65%.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.