Samuel T Vielee, William J Buchanan, Spencer H Roof, Rehan Kahloon, Elizabeth Evans, Jessica Isibor, Maitri Patel, Idoia Meaza, Haiyan Lu, Aggie R Williams, J Calvin Kouokam, Sandra S Wise, Luping Guo, Rachel M Wise, Jamie L Wise, Lu Cai, Jun Cai, John P Wise
{"title":"饮用水中六价铬暴露 90 天后,铬在大鼠海马中选择性累积,并诱发年龄和性别依赖性金属失衡。","authors":"Samuel T Vielee, William J Buchanan, Spencer H Roof, Rehan Kahloon, Elizabeth Evans, Jessica Isibor, Maitri Patel, Idoia Meaza, Haiyan Lu, Aggie R Williams, J Calvin Kouokam, Sandra S Wise, Luping Guo, Rachel M Wise, Jamie L Wise, Lu Cai, Jun Cai, John P Wise","doi":"10.3390/toxics12100722","DOIUrl":null,"url":null,"abstract":"<p><p>Hexavalent chromium (Cr[VI]) is a widespread environmental pollutant in air and water that is primarily attributed to industrial pollution. The current maximum contaminant levels (MCLs) for drinking water from the World Health Organization and the U.S. Environmental Protection Agency (0.05 and 0.1 mg/L, respectively) were set based on contact dermatitis and warrant further toxicological investigation. While Cr(VI) is neurotoxic and accumulates in the brain, most animal studies only report whole-brain Cr, leaving large knowledge gaps. Few studies consider differences between ages or sexes, and fewer consider essential metal dyshomeostasis. We sought to investigate where Cr accumulates in the brain, considering sex and age differences, following a 90-day drinking water exposure to current MCLs. Here, we report Cr levels in six brain regions of rats exposed to drinking water Cr(VI). We observed Cr only accumulated in the hippocampus, and only in older females. We further assessed changes to essential metals in the hippocampus, observing opposite effects across sexes and between young rats compared to older rats. In sum, our data indicate drinking water Cr(VI) selectively targeted the hippocampus, with geriatric females accumulating the most Cr, and induced significant essential metal dyshomeostasis even in tissues lacking evident Cr accumulation.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510846/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chromium Selectively Accumulates in the Rat Hippocampus after 90 Days of Exposure to Cr(VI) in Drinking Water and Induces Age- and Sex-Dependent Metal Dyshomeostasis.\",\"authors\":\"Samuel T Vielee, William J Buchanan, Spencer H Roof, Rehan Kahloon, Elizabeth Evans, Jessica Isibor, Maitri Patel, Idoia Meaza, Haiyan Lu, Aggie R Williams, J Calvin Kouokam, Sandra S Wise, Luping Guo, Rachel M Wise, Jamie L Wise, Lu Cai, Jun Cai, John P Wise\",\"doi\":\"10.3390/toxics12100722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hexavalent chromium (Cr[VI]) is a widespread environmental pollutant in air and water that is primarily attributed to industrial pollution. The current maximum contaminant levels (MCLs) for drinking water from the World Health Organization and the U.S. Environmental Protection Agency (0.05 and 0.1 mg/L, respectively) were set based on contact dermatitis and warrant further toxicological investigation. While Cr(VI) is neurotoxic and accumulates in the brain, most animal studies only report whole-brain Cr, leaving large knowledge gaps. Few studies consider differences between ages or sexes, and fewer consider essential metal dyshomeostasis. We sought to investigate where Cr accumulates in the brain, considering sex and age differences, following a 90-day drinking water exposure to current MCLs. Here, we report Cr levels in six brain regions of rats exposed to drinking water Cr(VI). We observed Cr only accumulated in the hippocampus, and only in older females. We further assessed changes to essential metals in the hippocampus, observing opposite effects across sexes and between young rats compared to older rats. In sum, our data indicate drinking water Cr(VI) selectively targeted the hippocampus, with geriatric females accumulating the most Cr, and induced significant essential metal dyshomeostasis even in tissues lacking evident Cr accumulation.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510846/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics12100722\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100722","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Chromium Selectively Accumulates in the Rat Hippocampus after 90 Days of Exposure to Cr(VI) in Drinking Water and Induces Age- and Sex-Dependent Metal Dyshomeostasis.
Hexavalent chromium (Cr[VI]) is a widespread environmental pollutant in air and water that is primarily attributed to industrial pollution. The current maximum contaminant levels (MCLs) for drinking water from the World Health Organization and the U.S. Environmental Protection Agency (0.05 and 0.1 mg/L, respectively) were set based on contact dermatitis and warrant further toxicological investigation. While Cr(VI) is neurotoxic and accumulates in the brain, most animal studies only report whole-brain Cr, leaving large knowledge gaps. Few studies consider differences between ages or sexes, and fewer consider essential metal dyshomeostasis. We sought to investigate where Cr accumulates in the brain, considering sex and age differences, following a 90-day drinking water exposure to current MCLs. Here, we report Cr levels in six brain regions of rats exposed to drinking water Cr(VI). We observed Cr only accumulated in the hippocampus, and only in older females. We further assessed changes to essential metals in the hippocampus, observing opposite effects across sexes and between young rats compared to older rats. In sum, our data indicate drinking water Cr(VI) selectively targeted the hippocampus, with geriatric females accumulating the most Cr, and induced significant essential metal dyshomeostasis even in tissues lacking evident Cr accumulation.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.