使用膨润土的好氧陶瓷膜生物反应器在制药废水处理中增强污染物去除和防污能力

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Salaheddine Elmoutez, Hafida Ayyoub, Mohamed Chaker Necibi, Azzedine Elmidaoui, Mohamed Taky
{"title":"使用膨润土的好氧陶瓷膜生物反应器在制药废水处理中增强污染物去除和防污能力","authors":"Salaheddine Elmoutez, Hafida Ayyoub, Mohamed Chaker Necibi, Azzedine Elmidaoui, Mohamed Taky","doi":"10.3390/membranes14100205","DOIUrl":null,"url":null,"abstract":"<p><p>This study examined the impact of adding bentonite clay (concentration of 1.5 to 10 g/L) to a pilot-scale aerobic ceramic membrane bioreactor (AeCMBR) for treating pharmaceutical wastewater (PhWW). The hydraulic retention time (HRT) was maintained at 24 h; the dissolved oxygen was between 2 mg/L (on) and 4 mg/L (off) throughout operation. Organic and nitrogen pollution removal rates and heavy metal (Cu, Ni, Pb, Zn) reduction rates were assessed. The chemical oxygen demand (COD) removal efficiency exceeded 82%. Adsorption improved ammonia (NH4+) removal to 78%; the addition of 5 g of bentonite resulted in a 38% improvement compared with the process without bentonite. The average nitrate concentration decreased from 169.69 mg/L to 43.72 mg/L. The average removal efficiencies for Cu, Ni, Pb and Zn were 86%, 68.52%, 46.90% and 56.76%, respectively. Bentonite at 5 g/L significantly reduced membrane fouling. The cost-benefit analysis enabled us to predict that the process will meet the multiple objectives of durability, treatment performance and economic viability. The combination of an AeCMBR and bentonite adsorption has proven to be a valuable solution for treating highly polluted wastewater.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 10","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509799/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced Pollutant Removal and Antifouling in an Aerobic Ceramic Membrane Bioreactor with Bentonite for Pharmaceutical Wastewater Treatment.\",\"authors\":\"Salaheddine Elmoutez, Hafida Ayyoub, Mohamed Chaker Necibi, Azzedine Elmidaoui, Mohamed Taky\",\"doi\":\"10.3390/membranes14100205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study examined the impact of adding bentonite clay (concentration of 1.5 to 10 g/L) to a pilot-scale aerobic ceramic membrane bioreactor (AeCMBR) for treating pharmaceutical wastewater (PhWW). The hydraulic retention time (HRT) was maintained at 24 h; the dissolved oxygen was between 2 mg/L (on) and 4 mg/L (off) throughout operation. Organic and nitrogen pollution removal rates and heavy metal (Cu, Ni, Pb, Zn) reduction rates were assessed. The chemical oxygen demand (COD) removal efficiency exceeded 82%. Adsorption improved ammonia (NH4+) removal to 78%; the addition of 5 g of bentonite resulted in a 38% improvement compared with the process without bentonite. The average nitrate concentration decreased from 169.69 mg/L to 43.72 mg/L. The average removal efficiencies for Cu, Ni, Pb and Zn were 86%, 68.52%, 46.90% and 56.76%, respectively. Bentonite at 5 g/L significantly reduced membrane fouling. The cost-benefit analysis enabled us to predict that the process will meet the multiple objectives of durability, treatment performance and economic viability. The combination of an AeCMBR and bentonite adsorption has proven to be a valuable solution for treating highly polluted wastewater.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509799/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14100205\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14100205","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了在处理制药废水(PhWW)的中试规模好氧陶瓷膜生物反应器(AeCMBR)中添加膨润土(浓度为 1.5 至 10 克/升)的影响。在整个运行过程中,水力停留时间(HRT)保持在 24 小时;溶解氧介于 2 毫克/升(开)和 4 毫克/升(关)之间。评估了有机物和氮污染的去除率以及重金属(铜、镍、铅、锌)的减少率。化学需氧量(COD)去除率超过 82%。吸附技术将氨氮(NH4+)的去除率提高到 78%;与不添加膨润土的工艺相比,添加 5 克膨润土后,氨氮(NH4+)的去除率提高了 38%。硝酸盐的平均浓度从 169.69 毫克/升降至 43.72 毫克/升。铜、镍、铅和锌的平均去除率分别为 86%、68.52%、46.90% 和 56.76%。膨润土的用量为 5 克/升,大大减少了膜堵塞。通过成本效益分析,我们可以预测该工艺将满足耐久性、处理性能和经济可行性等多重目标。事实证明,AeCMBR 与膨润土吸附的结合是处理高污染废水的重要解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Pollutant Removal and Antifouling in an Aerobic Ceramic Membrane Bioreactor with Bentonite for Pharmaceutical Wastewater Treatment.

This study examined the impact of adding bentonite clay (concentration of 1.5 to 10 g/L) to a pilot-scale aerobic ceramic membrane bioreactor (AeCMBR) for treating pharmaceutical wastewater (PhWW). The hydraulic retention time (HRT) was maintained at 24 h; the dissolved oxygen was between 2 mg/L (on) and 4 mg/L (off) throughout operation. Organic and nitrogen pollution removal rates and heavy metal (Cu, Ni, Pb, Zn) reduction rates were assessed. The chemical oxygen demand (COD) removal efficiency exceeded 82%. Adsorption improved ammonia (NH4+) removal to 78%; the addition of 5 g of bentonite resulted in a 38% improvement compared with the process without bentonite. The average nitrate concentration decreased from 169.69 mg/L to 43.72 mg/L. The average removal efficiencies for Cu, Ni, Pb and Zn were 86%, 68.52%, 46.90% and 56.76%, respectively. Bentonite at 5 g/L significantly reduced membrane fouling. The cost-benefit analysis enabled us to predict that the process will meet the multiple objectives of durability, treatment performance and economic viability. The combination of an AeCMBR and bentonite adsorption has proven to be a valuable solution for treating highly polluted wastewater.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信