Laura E Carreto-Binaghi, Milton Nieto-Ponce, Andrea Palencia-Reyes, Rodolfo L Chávez-Domínguez, Jessica Blancas-Zaragoza, Pablo Franco-Mendoza, Montserrat A García-Ramos, Claudia I Hernández-Lázaro, Martha Torres, Claudia Carranza
{"title":"用酶联免疫斑点分析法检测外周血单核细胞对 SARS-CoV-2 Spike 蛋白反应的人类 IFN-γ 的有效性。","authors":"Laura E Carreto-Binaghi, Milton Nieto-Ponce, Andrea Palencia-Reyes, Rodolfo L Chávez-Domínguez, Jessica Blancas-Zaragoza, Pablo Franco-Mendoza, Montserrat A García-Ramos, Claudia I Hernández-Lázaro, Martha Torres, Claudia Carranza","doi":"10.3390/biom14101286","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 vaccine evaluations are mainly focused on antibody analyses, but there is growing interest in measuring the cellular immune responses from the researchers evaluating these vaccines. The cellular responses to several COVID-19 vaccines have been studied using the enzyme-linked immunospot (ELISPOT) assay for IFN-γ. However, the ELISPOT assay is no longer used only for research purpose and so the performance of this assay must be validated. Since the bioanalytical validation of ELISPOT-IFN-γ is essential for evaluating the method's effectiveness and establishing confidence in a vaccine's immunogenicity, the present work validates the ELISPOT-IFN-γ assay's performance in determining the frequency of IFN-γ-producing cells after stimulation with the SARS-CoV-2 spike protein. The validation was performed in peripheral blood mononuclear cells from volunteers immunized with anti-COVID-19 vaccines. According to the findings, the LOD was 17 SFU and the LLOQ was 22 SFU, which makes the method highly sensitive and suitable for evaluating low levels of cellular responses. The procedure's accuracy is confirmed by the correlation coefficients for the spike protein and anti-CD3<sup>+</sup>, being 0.98 and 0.95, respectively. The repeatability and intermediate precision tests were confirmed to be reliable by obtaining a coefficient of variation of ≤25%. The results obtained in this validation enable the assay to be employed for studying antigen-specific cells and evaluating cellular responses to vaccines.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506497/pdf/","citationCount":"0","resultStr":"{\"title\":\"Validation of the Enzyme-Linked ImmunoSpot Analytic Method for the Detection of Human IFN-γ from Peripheral Blood Mononuclear Cells in Response to the SARS-CoV-2 Spike Protein.\",\"authors\":\"Laura E Carreto-Binaghi, Milton Nieto-Ponce, Andrea Palencia-Reyes, Rodolfo L Chávez-Domínguez, Jessica Blancas-Zaragoza, Pablo Franco-Mendoza, Montserrat A García-Ramos, Claudia I Hernández-Lázaro, Martha Torres, Claudia Carranza\",\"doi\":\"10.3390/biom14101286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>COVID-19 vaccine evaluations are mainly focused on antibody analyses, but there is growing interest in measuring the cellular immune responses from the researchers evaluating these vaccines. The cellular responses to several COVID-19 vaccines have been studied using the enzyme-linked immunospot (ELISPOT) assay for IFN-γ. However, the ELISPOT assay is no longer used only for research purpose and so the performance of this assay must be validated. Since the bioanalytical validation of ELISPOT-IFN-γ is essential for evaluating the method's effectiveness and establishing confidence in a vaccine's immunogenicity, the present work validates the ELISPOT-IFN-γ assay's performance in determining the frequency of IFN-γ-producing cells after stimulation with the SARS-CoV-2 spike protein. The validation was performed in peripheral blood mononuclear cells from volunteers immunized with anti-COVID-19 vaccines. According to the findings, the LOD was 17 SFU and the LLOQ was 22 SFU, which makes the method highly sensitive and suitable for evaluating low levels of cellular responses. The procedure's accuracy is confirmed by the correlation coefficients for the spike protein and anti-CD3<sup>+</sup>, being 0.98 and 0.95, respectively. The repeatability and intermediate precision tests were confirmed to be reliable by obtaining a coefficient of variation of ≤25%. The results obtained in this validation enable the assay to be employed for studying antigen-specific cells and evaluating cellular responses to vaccines.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506497/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom14101286\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14101286","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Validation of the Enzyme-Linked ImmunoSpot Analytic Method for the Detection of Human IFN-γ from Peripheral Blood Mononuclear Cells in Response to the SARS-CoV-2 Spike Protein.
COVID-19 vaccine evaluations are mainly focused on antibody analyses, but there is growing interest in measuring the cellular immune responses from the researchers evaluating these vaccines. The cellular responses to several COVID-19 vaccines have been studied using the enzyme-linked immunospot (ELISPOT) assay for IFN-γ. However, the ELISPOT assay is no longer used only for research purpose and so the performance of this assay must be validated. Since the bioanalytical validation of ELISPOT-IFN-γ is essential for evaluating the method's effectiveness and establishing confidence in a vaccine's immunogenicity, the present work validates the ELISPOT-IFN-γ assay's performance in determining the frequency of IFN-γ-producing cells after stimulation with the SARS-CoV-2 spike protein. The validation was performed in peripheral blood mononuclear cells from volunteers immunized with anti-COVID-19 vaccines. According to the findings, the LOD was 17 SFU and the LLOQ was 22 SFU, which makes the method highly sensitive and suitable for evaluating low levels of cellular responses. The procedure's accuracy is confirmed by the correlation coefficients for the spike protein and anti-CD3+, being 0.98 and 0.95, respectively. The repeatability and intermediate precision tests were confirmed to be reliable by obtaining a coefficient of variation of ≤25%. The results obtained in this validation enable the assay to be employed for studying antigen-specific cells and evaluating cellular responses to vaccines.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.