Dhruba P. Adhikari, Michael R. Stoneman, Valerică Raicu
{"title":"双光子激发下荧光蛋白的光漂白对 FRET 测量的影响。","authors":"Dhruba P. Adhikari, Michael R. Stoneman, Valerică Raicu","doi":"10.1016/j.saa.2024.125294","DOIUrl":null,"url":null,"abstract":"<div><div>Förster resonance energy transfer (FRET) is a widely used technique for nanoscale molecular distance measurements, which makes FRET ideal for studying protein interactions and quaternary structure of protein complexes. In this work, we were interested in how photobleaching of donor and acceptor molecules affects the FRET results under various excitation conditions. We conducted a systematic study, under two-photon excitation, of the effects of the excitation power and the choice of excitation wavelengths upon the measured FRET efficiencies of multiplex protein constructs, consisting of one donor (D) and two acceptors (A) or one acceptor and a non-fluorescent tag (N), using both the kinetic theory of FRET and numerical simulations under given excitation conditions. We found that under low excitation power and properly chosen excitation wavelengths the relationship between the FRET efficiency of a trimeric construct ADA agrees within 2% with the FRET efficiency computed (via the kinetic theory of FRET in the absence of photobleaching) from two dimeric constructs ADN and NDA. By contrast, at higher excitation powers the FRET efficiencies changed significantly due to the photobleaching of both the donor (through direct excitation) and the acceptor (mostly through FRET-induced excitation). Based on these results and numerical simulations using a simple but competent algorithm, we developed guidelines for choosing appropriate experimental conditions for reliable FRET measurements, as well as for interpreting the results of existing experiments using different excitation schemes.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of photobleaching of fluorescent proteins on FRET measurements under two-photon excitation\",\"authors\":\"Dhruba P. Adhikari, Michael R. Stoneman, Valerică Raicu\",\"doi\":\"10.1016/j.saa.2024.125294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Förster resonance energy transfer (FRET) is a widely used technique for nanoscale molecular distance measurements, which makes FRET ideal for studying protein interactions and quaternary structure of protein complexes. In this work, we were interested in how photobleaching of donor and acceptor molecules affects the FRET results under various excitation conditions. We conducted a systematic study, under two-photon excitation, of the effects of the excitation power and the choice of excitation wavelengths upon the measured FRET efficiencies of multiplex protein constructs, consisting of one donor (D) and two acceptors (A) or one acceptor and a non-fluorescent tag (N), using both the kinetic theory of FRET and numerical simulations under given excitation conditions. We found that under low excitation power and properly chosen excitation wavelengths the relationship between the FRET efficiency of a trimeric construct ADA agrees within 2% with the FRET efficiency computed (via the kinetic theory of FRET in the absence of photobleaching) from two dimeric constructs ADN and NDA. By contrast, at higher excitation powers the FRET efficiencies changed significantly due to the photobleaching of both the donor (through direct excitation) and the acceptor (mostly through FRET-induced excitation). Based on these results and numerical simulations using a simple but competent algorithm, we developed guidelines for choosing appropriate experimental conditions for reliable FRET measurements, as well as for interpreting the results of existing experiments using different excitation schemes.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142524014604\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524014604","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Impact of photobleaching of fluorescent proteins on FRET measurements under two-photon excitation
Förster resonance energy transfer (FRET) is a widely used technique for nanoscale molecular distance measurements, which makes FRET ideal for studying protein interactions and quaternary structure of protein complexes. In this work, we were interested in how photobleaching of donor and acceptor molecules affects the FRET results under various excitation conditions. We conducted a systematic study, under two-photon excitation, of the effects of the excitation power and the choice of excitation wavelengths upon the measured FRET efficiencies of multiplex protein constructs, consisting of one donor (D) and two acceptors (A) or one acceptor and a non-fluorescent tag (N), using both the kinetic theory of FRET and numerical simulations under given excitation conditions. We found that under low excitation power and properly chosen excitation wavelengths the relationship between the FRET efficiency of a trimeric construct ADA agrees within 2% with the FRET efficiency computed (via the kinetic theory of FRET in the absence of photobleaching) from two dimeric constructs ADN and NDA. By contrast, at higher excitation powers the FRET efficiencies changed significantly due to the photobleaching of both the donor (through direct excitation) and the acceptor (mostly through FRET-induced excitation). Based on these results and numerical simulations using a simple but competent algorithm, we developed guidelines for choosing appropriate experimental conditions for reliable FRET measurements, as well as for interpreting the results of existing experiments using different excitation schemes.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.