利用基于半导体的 E-Nose 技术进行床旁呼气样本分析,可将非感染者与 SARS-CoV-2 肺炎患者区分开来:一项多分析师实验。

IF 10.7 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
MedComm Pub Date : 2024-10-24 DOI:10.1002/mco2.726
Tobias Woehrle, Florian Pfeiffer, Maximilian M. Mandl, Wolfgang Sobtzick, Jörg Heitzer, Alisa Krstova, Luzie Kamm, Matthias Feuerecker, Dominique Moser, Matthias Klein, Benedikt Aulinger, Michael Dolch, Anne-Laure Boulesteix, Daniel Lanz, Alexander Choukér
{"title":"利用基于半导体的 E-Nose 技术进行床旁呼气样本分析,可将非感染者与 SARS-CoV-2 肺炎患者区分开来:一项多分析师实验。","authors":"Tobias Woehrle,&nbsp;Florian Pfeiffer,&nbsp;Maximilian M. Mandl,&nbsp;Wolfgang Sobtzick,&nbsp;Jörg Heitzer,&nbsp;Alisa Krstova,&nbsp;Luzie Kamm,&nbsp;Matthias Feuerecker,&nbsp;Dominique Moser,&nbsp;Matthias Klein,&nbsp;Benedikt Aulinger,&nbsp;Michael Dolch,&nbsp;Anne-Laure Boulesteix,&nbsp;Daniel Lanz,&nbsp;Alexander Choukér","doi":"10.1002/mco2.726","DOIUrl":null,"url":null,"abstract":"<p>Metal oxide sensor-based electronic nose (E-Nose) technology provides an easy to use method for breath analysis by detection of volatile organic compound (VOC)-induced changes of electrical conductivity. Resulting signal patterns are then analyzed by machine learning (ML) algorithms. This study aimed to establish breath analysis by E-Nose technology as a diagnostic tool for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pneumonia within a multi-analyst experiment. Breath samples of 126 subjects with (<i>n</i> = 63) or without SARS-CoV-2 pneumonia (<i>n</i> = 63) were collected using the ReCIVA® Breath Sampler, enriched and stored on Tenax sorption tubes, and analyzed using an E-Nose unit with 10 sensors. ML approaches were applied by three independent data analyst teams and included a wide range of classifiers, hyperparameters, training modes, and subsets of training data. Within the multi-analyst experiment, all teams successfully classified individuals as infected or uninfected with an averaged area under the curve (AUC) larger than 90% and misclassification error lower than 19%, and identified the same sensor as most relevant to classification success. This new method using VOC enrichment and E-Nose analysis combined with ML can yield results similar to polymerase chain reaction (PCR) detection and superior to point-of-care (POC) antigen testing. Reducing the sensor set to the most relevant sensor may prove interesting for developing targeted POC testing.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502717/pdf/","citationCount":"0","resultStr":"{\"title\":\"Point-of-care breath sample analysis by semiconductor-based E-Nose technology discriminates non-infected subjects from SARS-CoV-2 pneumonia patients: a multi-analyst experiment\",\"authors\":\"Tobias Woehrle,&nbsp;Florian Pfeiffer,&nbsp;Maximilian M. Mandl,&nbsp;Wolfgang Sobtzick,&nbsp;Jörg Heitzer,&nbsp;Alisa Krstova,&nbsp;Luzie Kamm,&nbsp;Matthias Feuerecker,&nbsp;Dominique Moser,&nbsp;Matthias Klein,&nbsp;Benedikt Aulinger,&nbsp;Michael Dolch,&nbsp;Anne-Laure Boulesteix,&nbsp;Daniel Lanz,&nbsp;Alexander Choukér\",\"doi\":\"10.1002/mco2.726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal oxide sensor-based electronic nose (E-Nose) technology provides an easy to use method for breath analysis by detection of volatile organic compound (VOC)-induced changes of electrical conductivity. Resulting signal patterns are then analyzed by machine learning (ML) algorithms. This study aimed to establish breath analysis by E-Nose technology as a diagnostic tool for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pneumonia within a multi-analyst experiment. Breath samples of 126 subjects with (<i>n</i> = 63) or without SARS-CoV-2 pneumonia (<i>n</i> = 63) were collected using the ReCIVA® Breath Sampler, enriched and stored on Tenax sorption tubes, and analyzed using an E-Nose unit with 10 sensors. ML approaches were applied by three independent data analyst teams and included a wide range of classifiers, hyperparameters, training modes, and subsets of training data. Within the multi-analyst experiment, all teams successfully classified individuals as infected or uninfected with an averaged area under the curve (AUC) larger than 90% and misclassification error lower than 19%, and identified the same sensor as most relevant to classification success. This new method using VOC enrichment and E-Nose analysis combined with ML can yield results similar to polymerase chain reaction (PCR) detection and superior to point-of-care (POC) antigen testing. Reducing the sensor set to the most relevant sensor may prove interesting for developing targeted POC testing.</p>\",\"PeriodicalId\":94133,\"journal\":{\"name\":\"MedComm\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502717/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mco2.726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

基于金属氧化物传感器的电子鼻(E-Nose)技术通过检测挥发性有机化合物(VOC)引起的电导率变化,提供了一种易于使用的呼气分析方法。然后通过机器学习(ML)算法分析产生的信号模式。本研究旨在通过多分析仪实验,将 E-Nose 技术的呼气分析确立为严重急性呼吸系统综合征冠状病毒 2 型(SARS-CoV-2)肺炎的诊断工具。使用 ReCIVA® 呼吸采样器收集了 126 名患有(n = 63)或未患有(n = 63)SARS-CoV-2 肺炎的受试者的呼吸样本,经过富集后储存在 Tenax 吸附管中,并使用带有 10 个传感器的 E-Nose 装置进行分析。三个独立的数据分析团队采用了 ML 方法,包括多种分类器、超参数、训练模式和训练数据子集。在多分析师实验中,所有团队都成功地将个体分类为感染者或未感染者,平均曲线下面积(AUC)大于 90%,误分类误差小于 19%,并确定同一传感器与分类成功与否最为相关。这种使用 VOC 富集和 E-Nose 分析并结合 ML 的新方法可获得与聚合酶链反应 (PCR) 检测类似的结果,并优于护理点 (POC) 抗原检测。将传感器集减少到最相关的传感器可能会对开发有针对性的 POC 检测很有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Point-of-care breath sample analysis by semiconductor-based E-Nose technology discriminates non-infected subjects from SARS-CoV-2 pneumonia patients: a multi-analyst experiment

Point-of-care breath sample analysis by semiconductor-based E-Nose technology discriminates non-infected subjects from SARS-CoV-2 pneumonia patients: a multi-analyst experiment

Metal oxide sensor-based electronic nose (E-Nose) technology provides an easy to use method for breath analysis by detection of volatile organic compound (VOC)-induced changes of electrical conductivity. Resulting signal patterns are then analyzed by machine learning (ML) algorithms. This study aimed to establish breath analysis by E-Nose technology as a diagnostic tool for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pneumonia within a multi-analyst experiment. Breath samples of 126 subjects with (n = 63) or without SARS-CoV-2 pneumonia (n = 63) were collected using the ReCIVA® Breath Sampler, enriched and stored on Tenax sorption tubes, and analyzed using an E-Nose unit with 10 sensors. ML approaches were applied by three independent data analyst teams and included a wide range of classifiers, hyperparameters, training modes, and subsets of training data. Within the multi-analyst experiment, all teams successfully classified individuals as infected or uninfected with an averaged area under the curve (AUC) larger than 90% and misclassification error lower than 19%, and identified the same sensor as most relevant to classification success. This new method using VOC enrichment and E-Nose analysis combined with ML can yield results similar to polymerase chain reaction (PCR) detection and superior to point-of-care (POC) antigen testing. Reducing the sensor set to the most relevant sensor may prove interesting for developing targeted POC testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信