Jing Shi , Chen Peng , Yuxin Guo , Jin Zhang , Xiangpeng Xie
{"title":"通过非周期性间歇控制实现离散-时间延迟模糊系统的输入-状态稳定","authors":"Jing Shi , Chen Peng , Yuxin Guo , Jin Zhang , Xiangpeng Xie","doi":"10.1016/j.isatra.2024.10.008","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies input-to-state stabilization of delayed discrete-time Takagi–Sugeno (T–S) fuzzy systems via aperiodically intermittent control. We first consider aperiodically intermittent time-triggered control, where we present sufficient conditions via the mathematical induction under the hypotheses of the quasiperiodicity condition. Based on the derived sufficient conditions, we apply a Lyapunov–Krasovskii (L–K) method together with the descriptor method to derive the explicit linear matrix inequalities (LMIs) that ensure the exponential stability and input-to-state stability (ISS), and show the existence of the aperiodically intermittent time-triggered controller that leads to efficient results with much less numerical complexity. We next consider aperiodically intermittent dynamic event-triggered control with an additional parameter that is larger than one. This strategy allows that the introduced dynamical variable does not remain constant but increases during the control rest interval. As a result, the proposed dynamic event-triggered strategy leads to a smaller number of sent signals than that for the case of the additional parameter which equals to one. Finally, numerical examples including a practical inverted pendulum on a cart are presented to verify the validity of the proposed method.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"155 ","pages":"Pages 205-216"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Input-to-state stabilization of discrete-time delayed fuzzy systems via aperiodically intermittent control\",\"authors\":\"Jing Shi , Chen Peng , Yuxin Guo , Jin Zhang , Xiangpeng Xie\",\"doi\":\"10.1016/j.isatra.2024.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies input-to-state stabilization of delayed discrete-time Takagi–Sugeno (T–S) fuzzy systems via aperiodically intermittent control. We first consider aperiodically intermittent time-triggered control, where we present sufficient conditions via the mathematical induction under the hypotheses of the quasiperiodicity condition. Based on the derived sufficient conditions, we apply a Lyapunov–Krasovskii (L–K) method together with the descriptor method to derive the explicit linear matrix inequalities (LMIs) that ensure the exponential stability and input-to-state stability (ISS), and show the existence of the aperiodically intermittent time-triggered controller that leads to efficient results with much less numerical complexity. We next consider aperiodically intermittent dynamic event-triggered control with an additional parameter that is larger than one. This strategy allows that the introduced dynamical variable does not remain constant but increases during the control rest interval. As a result, the proposed dynamic event-triggered strategy leads to a smaller number of sent signals than that for the case of the additional parameter which equals to one. Finally, numerical examples including a practical inverted pendulum on a cart are presented to verify the validity of the proposed method.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"155 \",\"pages\":\"Pages 205-216\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824004713\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824004713","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Input-to-state stabilization of discrete-time delayed fuzzy systems via aperiodically intermittent control
This paper studies input-to-state stabilization of delayed discrete-time Takagi–Sugeno (T–S) fuzzy systems via aperiodically intermittent control. We first consider aperiodically intermittent time-triggered control, where we present sufficient conditions via the mathematical induction under the hypotheses of the quasiperiodicity condition. Based on the derived sufficient conditions, we apply a Lyapunov–Krasovskii (L–K) method together with the descriptor method to derive the explicit linear matrix inequalities (LMIs) that ensure the exponential stability and input-to-state stability (ISS), and show the existence of the aperiodically intermittent time-triggered controller that leads to efficient results with much less numerical complexity. We next consider aperiodically intermittent dynamic event-triggered control with an additional parameter that is larger than one. This strategy allows that the introduced dynamical variable does not remain constant but increases during the control rest interval. As a result, the proposed dynamic event-triggered strategy leads to a smaller number of sent signals than that for the case of the additional parameter which equals to one. Finally, numerical examples including a practical inverted pendulum on a cart are presented to verify the validity of the proposed method.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.