Yun-Suk Kwon, Phuong Anh Nguyen, Hai Yen Dao, Hyunsoo Jang, Soyoung Kim
{"title":"与传统的分次放射治疗相比,单次大剂量放射治疗在克服放射抗性方面的优势。","authors":"Yun-Suk Kwon, Phuong Anh Nguyen, Hai Yen Dao, Hyunsoo Jang, Soyoung Kim","doi":"10.1080/09553002.2024.2418493","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radioresistance is a major clinical challenge in cancer treatment, as it reduces the effectiveness of radiation therapy (RT). While advances in radiation delivery have enabled the clinical use of high-dose hypofractionated RT, its impact on radioresistant tumors remains unclear. This study aimed to compare the effects of single high-dose RT with conventional fractionated RT on radioresistant breast cancer cells and explore the underlying mechanisms.</p><p><strong>Methods: </strong>Radioresistant cell lines were previously established by exposing SK-BR-3 and MCF-7 cells to 48 Gy and 70 Gy of radiation, respectively, in multiple fractions. We compared the effects of 2 Gy × 5 and 7 Gy × 1 fractions on these cells using clonogenic survival assays and western blot analysis. In vivo antitumor effects were assessed in SR tumor-bearing <i>BALB/c</i> mice irradiated with either 2 Gy × 5 or 7 Gy × 1 fractions.</p><p><strong>Results: </strong>7 Gy x1 was more efficient at killing radioresistant breast cancer cells than 2 Gy x5. Furthermore, the 7 Gy x1 fraction produced higher levels of reactive oxygen species (ROS) and decreased the expression of radioresistance factors such as p-STAT3, ACSL4, FOXM1, RAD51, Bcl-xL, and survivin. Consistent with the in vitro studies, the 7 Gy × 1 fraction also showed superior antitumor effects in SR tumor-bearing <i>BALB/c</i> mice.</p><p><strong>Conclusions: </strong>Single high-dose RT offers superior advantages over conventional fractionated RT in regard to overcoming radioresistance, supporting its potential as a promising treatment for recurrent tumors.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advantages of single high-dose radiation therapy compared with conventional fractionated radiation therapy in overcoming radioresistance.\",\"authors\":\"Yun-Suk Kwon, Phuong Anh Nguyen, Hai Yen Dao, Hyunsoo Jang, Soyoung Kim\",\"doi\":\"10.1080/09553002.2024.2418493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Radioresistance is a major clinical challenge in cancer treatment, as it reduces the effectiveness of radiation therapy (RT). While advances in radiation delivery have enabled the clinical use of high-dose hypofractionated RT, its impact on radioresistant tumors remains unclear. This study aimed to compare the effects of single high-dose RT with conventional fractionated RT on radioresistant breast cancer cells and explore the underlying mechanisms.</p><p><strong>Methods: </strong>Radioresistant cell lines were previously established by exposing SK-BR-3 and MCF-7 cells to 48 Gy and 70 Gy of radiation, respectively, in multiple fractions. We compared the effects of 2 Gy × 5 and 7 Gy × 1 fractions on these cells using clonogenic survival assays and western blot analysis. In vivo antitumor effects were assessed in SR tumor-bearing <i>BALB/c</i> mice irradiated with either 2 Gy × 5 or 7 Gy × 1 fractions.</p><p><strong>Results: </strong>7 Gy x1 was more efficient at killing radioresistant breast cancer cells than 2 Gy x5. Furthermore, the 7 Gy x1 fraction produced higher levels of reactive oxygen species (ROS) and decreased the expression of radioresistance factors such as p-STAT3, ACSL4, FOXM1, RAD51, Bcl-xL, and survivin. Consistent with the in vitro studies, the 7 Gy × 1 fraction also showed superior antitumor effects in SR tumor-bearing <i>BALB/c</i> mice.</p><p><strong>Conclusions: </strong>Single high-dose RT offers superior advantages over conventional fractionated RT in regard to overcoming radioresistance, supporting its potential as a promising treatment for recurrent tumors.</p>\",\"PeriodicalId\":94057,\"journal\":{\"name\":\"International journal of radiation biology\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of radiation biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09553002.2024.2418493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2024.2418493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advantages of single high-dose radiation therapy compared with conventional fractionated radiation therapy in overcoming radioresistance.
Background: Radioresistance is a major clinical challenge in cancer treatment, as it reduces the effectiveness of radiation therapy (RT). While advances in radiation delivery have enabled the clinical use of high-dose hypofractionated RT, its impact on radioresistant tumors remains unclear. This study aimed to compare the effects of single high-dose RT with conventional fractionated RT on radioresistant breast cancer cells and explore the underlying mechanisms.
Methods: Radioresistant cell lines were previously established by exposing SK-BR-3 and MCF-7 cells to 48 Gy and 70 Gy of radiation, respectively, in multiple fractions. We compared the effects of 2 Gy × 5 and 7 Gy × 1 fractions on these cells using clonogenic survival assays and western blot analysis. In vivo antitumor effects were assessed in SR tumor-bearing BALB/c mice irradiated with either 2 Gy × 5 or 7 Gy × 1 fractions.
Results: 7 Gy x1 was more efficient at killing radioresistant breast cancer cells than 2 Gy x5. Furthermore, the 7 Gy x1 fraction produced higher levels of reactive oxygen species (ROS) and decreased the expression of radioresistance factors such as p-STAT3, ACSL4, FOXM1, RAD51, Bcl-xL, and survivin. Consistent with the in vitro studies, the 7 Gy × 1 fraction also showed superior antitumor effects in SR tumor-bearing BALB/c mice.
Conclusions: Single high-dose RT offers superior advantages over conventional fractionated RT in regard to overcoming radioresistance, supporting its potential as a promising treatment for recurrent tumors.