Weiwei Zhang , Huizhong Sun , Pu Wang , Ying Zhu , Chengjing Qian , Ruiqiang Yang , Yingming Li , Shuangjiang Li , Julius Matsiko , Qinghua Zhang , Guibin Jiang
{"title":"中国京津冀地区大气中新型溴化阻燃剂的时空分布。","authors":"Weiwei Zhang , Huizhong Sun , Pu Wang , Ying Zhu , Chengjing Qian , Ruiqiang Yang , Yingming Li , Shuangjiang Li , Julius Matsiko , Qinghua Zhang , Guibin Jiang","doi":"10.1016/j.chemosphere.2024.143598","DOIUrl":null,"url":null,"abstract":"<div><div>The occurrence and spatio-temporal distribution of atmospheric novel brominated flame retardants (NBFRs) were studied across five sampling sites in the Beijing-Tianjin-Hebei (BTH) region over a whole year. By collecting samples (gas and particle) with a high-volume active air sampler (HV-AAS), nine NBFRs were analyzed and the sum concentrations ranged from 1.65 to 344 pg/m<sup>3</sup>, with the highest value found in the urban sampling site in Shijiazhuang City. Decabromodiphenylethane (DBDPE) was the predominant congener, which accounted for 60% of ∑<sub>9</sub>NBFRs on average, while it was 90% of ∑<sub>9</sub>NBFRs in the rural site and significantly higher than those observed in the urban sites (one-way ANOVA, <em>p</em> < 0.05). The levels of particle-bound NBFRs were significantly correlated with the variation of total suspended particulates (TSP) and temperature (<em>p</em> < 0.01), indicating their evident impact on the spatio-temporal distribution of NBFRs. Moreover, a significantly positive correlation was observed between the concentrations of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis (2-ethyl-1-hexyl) tetrabromophthalate (BEH-TEBP) (<em>p</em> < 0.01). Monocyclic brominated flame retardants (including PBBz, PBT, PBEB, HBB and TBP-DBPE) were correlated with each other (<em>p</em> < 0.01) in both gas and particle phase, suggesting their co-occurrence and the similar source in the environment. The gas-particle partitioning behavior was well predicted by the Li-Jia Empirical Model, and the results indicated that the target NBFRs did not reach the equilibrium state in air. This is one of very few studies revealed the spatio-temporal distribution of atmospheric NBFRs in the BTH region.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143598"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal and spatial distribution of novel brominated flame retardants in atmosphere of the Beijing-Tianjin-Hebei region, China\",\"authors\":\"Weiwei Zhang , Huizhong Sun , Pu Wang , Ying Zhu , Chengjing Qian , Ruiqiang Yang , Yingming Li , Shuangjiang Li , Julius Matsiko , Qinghua Zhang , Guibin Jiang\",\"doi\":\"10.1016/j.chemosphere.2024.143598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The occurrence and spatio-temporal distribution of atmospheric novel brominated flame retardants (NBFRs) were studied across five sampling sites in the Beijing-Tianjin-Hebei (BTH) region over a whole year. By collecting samples (gas and particle) with a high-volume active air sampler (HV-AAS), nine NBFRs were analyzed and the sum concentrations ranged from 1.65 to 344 pg/m<sup>3</sup>, with the highest value found in the urban sampling site in Shijiazhuang City. Decabromodiphenylethane (DBDPE) was the predominant congener, which accounted for 60% of ∑<sub>9</sub>NBFRs on average, while it was 90% of ∑<sub>9</sub>NBFRs in the rural site and significantly higher than those observed in the urban sites (one-way ANOVA, <em>p</em> < 0.05). The levels of particle-bound NBFRs were significantly correlated with the variation of total suspended particulates (TSP) and temperature (<em>p</em> < 0.01), indicating their evident impact on the spatio-temporal distribution of NBFRs. Moreover, a significantly positive correlation was observed between the concentrations of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis (2-ethyl-1-hexyl) tetrabromophthalate (BEH-TEBP) (<em>p</em> < 0.01). Monocyclic brominated flame retardants (including PBBz, PBT, PBEB, HBB and TBP-DBPE) were correlated with each other (<em>p</em> < 0.01) in both gas and particle phase, suggesting their co-occurrence and the similar source in the environment. The gas-particle partitioning behavior was well predicted by the Li-Jia Empirical Model, and the results indicated that the target NBFRs did not reach the equilibrium state in air. This is one of very few studies revealed the spatio-temporal distribution of atmospheric NBFRs in the BTH region.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"367 \",\"pages\":\"Article 143598\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045653524024986\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524024986","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Temporal and spatial distribution of novel brominated flame retardants in atmosphere of the Beijing-Tianjin-Hebei region, China
The occurrence and spatio-temporal distribution of atmospheric novel brominated flame retardants (NBFRs) were studied across five sampling sites in the Beijing-Tianjin-Hebei (BTH) region over a whole year. By collecting samples (gas and particle) with a high-volume active air sampler (HV-AAS), nine NBFRs were analyzed and the sum concentrations ranged from 1.65 to 344 pg/m3, with the highest value found in the urban sampling site in Shijiazhuang City. Decabromodiphenylethane (DBDPE) was the predominant congener, which accounted for 60% of ∑9NBFRs on average, while it was 90% of ∑9NBFRs in the rural site and significantly higher than those observed in the urban sites (one-way ANOVA, p < 0.05). The levels of particle-bound NBFRs were significantly correlated with the variation of total suspended particulates (TSP) and temperature (p < 0.01), indicating their evident impact on the spatio-temporal distribution of NBFRs. Moreover, a significantly positive correlation was observed between the concentrations of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis (2-ethyl-1-hexyl) tetrabromophthalate (BEH-TEBP) (p < 0.01). Monocyclic brominated flame retardants (including PBBz, PBT, PBEB, HBB and TBP-DBPE) were correlated with each other (p < 0.01) in both gas and particle phase, suggesting their co-occurrence and the similar source in the environment. The gas-particle partitioning behavior was well predicted by the Li-Jia Empirical Model, and the results indicated that the target NBFRs did not reach the equilibrium state in air. This is one of very few studies revealed the spatio-temporal distribution of atmospheric NBFRs in the BTH region.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.