Hui Li , Benjamin Atkins , Benjamin Reinhart , Elizabeth Herndon
{"title":"结构不同的锰氧化物去除邻苯二酚和对苯二酚效率中的结构-反应关系。","authors":"Hui Li , Benjamin Atkins , Benjamin Reinhart , Elizabeth Herndon","doi":"10.1016/j.chemosphere.2024.143602","DOIUrl":null,"url":null,"abstract":"<div><div>Catechol and hydroquinone are widely present hydroxybenzene isomers in the natural environment that induce environmental toxicities. These hydroxybenzene compounds can be effectively removed by manganese (Mn)-oxides via sorption and oxidative degradation processes. In the present study, we investigated the structure–reactivity relationships in the sorption and oxidation of catechol and hydroquinone on Mn-oxide surfaces. Two widely present Mn-oxides, including hydrous Mn oxide (HMO) and cryptomelane, comprised of layer and tunnel structures, respectively, are specifically studied. Effects of Mn-oxide structures and environmental pH conditions on the removal efficiency of these hydroxybenzene compounds, via sorption and oxidative degradation, are investigated. Cryptomelane, which has a higher specific surface area than HMO, possesses a higher sorption and oxidation capacity. The complexation mechanisms of catechol and hydroquinone vary due to their structure-induced difference in reactivity. Catechol reduced and dissolved more Mn from Mn-oxides than hydroquinone, accompanied by a higher C loss of catechol-C, suggesting a higher reactivity of catechol. Structural changes occurred in the Mn-oxides resulting from reaction with catechol and hydroquinone: reduction of Mn(IV), corresponding formation of Mn(III) and Mn(II) in the mineral, and free Mn<sup>2+</sup> ions released into the suspension. These insights could help us better understand and predict the fate of hydroxybenzene compounds in Mn-oxide-rich soils and wastewater treatment systems that generate Mn-oxides via Mn removal and the associated environmental toxicity.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143602"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure–reactivity relationships in the removal efficiency of catechol and hydroquinone by structurally diverse Mn-oxides\",\"authors\":\"Hui Li , Benjamin Atkins , Benjamin Reinhart , Elizabeth Herndon\",\"doi\":\"10.1016/j.chemosphere.2024.143602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Catechol and hydroquinone are widely present hydroxybenzene isomers in the natural environment that induce environmental toxicities. These hydroxybenzene compounds can be effectively removed by manganese (Mn)-oxides via sorption and oxidative degradation processes. In the present study, we investigated the structure–reactivity relationships in the sorption and oxidation of catechol and hydroquinone on Mn-oxide surfaces. Two widely present Mn-oxides, including hydrous Mn oxide (HMO) and cryptomelane, comprised of layer and tunnel structures, respectively, are specifically studied. Effects of Mn-oxide structures and environmental pH conditions on the removal efficiency of these hydroxybenzene compounds, via sorption and oxidative degradation, are investigated. Cryptomelane, which has a higher specific surface area than HMO, possesses a higher sorption and oxidation capacity. The complexation mechanisms of catechol and hydroquinone vary due to their structure-induced difference in reactivity. Catechol reduced and dissolved more Mn from Mn-oxides than hydroquinone, accompanied by a higher C loss of catechol-C, suggesting a higher reactivity of catechol. Structural changes occurred in the Mn-oxides resulting from reaction with catechol and hydroquinone: reduction of Mn(IV), corresponding formation of Mn(III) and Mn(II) in the mineral, and free Mn<sup>2+</sup> ions released into the suspension. These insights could help us better understand and predict the fate of hydroxybenzene compounds in Mn-oxide-rich soils and wastewater treatment systems that generate Mn-oxides via Mn removal and the associated environmental toxicity.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"367 \",\"pages\":\"Article 143602\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045653524025025\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524025025","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Structure–reactivity relationships in the removal efficiency of catechol and hydroquinone by structurally diverse Mn-oxides
Catechol and hydroquinone are widely present hydroxybenzene isomers in the natural environment that induce environmental toxicities. These hydroxybenzene compounds can be effectively removed by manganese (Mn)-oxides via sorption and oxidative degradation processes. In the present study, we investigated the structure–reactivity relationships in the sorption and oxidation of catechol and hydroquinone on Mn-oxide surfaces. Two widely present Mn-oxides, including hydrous Mn oxide (HMO) and cryptomelane, comprised of layer and tunnel structures, respectively, are specifically studied. Effects of Mn-oxide structures and environmental pH conditions on the removal efficiency of these hydroxybenzene compounds, via sorption and oxidative degradation, are investigated. Cryptomelane, which has a higher specific surface area than HMO, possesses a higher sorption and oxidation capacity. The complexation mechanisms of catechol and hydroquinone vary due to their structure-induced difference in reactivity. Catechol reduced and dissolved more Mn from Mn-oxides than hydroquinone, accompanied by a higher C loss of catechol-C, suggesting a higher reactivity of catechol. Structural changes occurred in the Mn-oxides resulting from reaction with catechol and hydroquinone: reduction of Mn(IV), corresponding formation of Mn(III) and Mn(II) in the mineral, and free Mn2+ ions released into the suspension. These insights could help us better understand and predict the fate of hydroxybenzene compounds in Mn-oxide-rich soils and wastewater treatment systems that generate Mn-oxides via Mn removal and the associated environmental toxicity.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.