Eleftheria Theodoropoulou , Paula Pierozan , Francesco Marabita , Andrey Höglund , Oskar Karlsson
{"title":"邻苯二甲酸二正丁酯对肝脏转录组的持续影响:能量和脂质代谢途径受损。","authors":"Eleftheria Theodoropoulou , Paula Pierozan , Francesco Marabita , Andrey Höglund , Oskar Karlsson","doi":"10.1016/j.chemosphere.2024.143605","DOIUrl":null,"url":null,"abstract":"<div><div>The environmental contaminant dibutyl phthalate (DBP) is reported to be hepatotoxic, but the underlying molecular pathways and pathological processes remain unclear. Here we used RNA-sequencing to characterize persistent hepatic transcriptional effects one week after the conclusion of five weeks oral exposure to 10 mg/kg/day or 100 mg/kg/day DBP in adult male mice. The exploratory transcriptome analysis demonstrated five differentially expressed genes (DEGs) in the 10 mg/kg/day group and 13 in the 100 mg/kg/day group. Gene Set Enrichment Analysis (GSEA), which identifies affected biological pathways rather than focusing solely on individual genes, revealed nine significantly enriched Reactome pathways shared by both DBP treatment groups. Additionally, we found 54 upregulated and one downregulated Reactome pathways in the 10 mg/kg/day DBP group, and 29 upregulated and 13 downregulated pathways in the 100 mg/kg/day DBP group. DBP exposure disrupted several key biological processes, including protein translation, protein folding, apoptosis, Hedgehog signaling, degradation of extracellular matrix and alterations in the energy/lipid metabolism. Subsequent liver tissue analysis confirmed that DBP exposure induced tissue disorganization, oxidative stress, lipid accumulation, increased TNF-α, ATP and glucokinase levels, and affected key metabolic proteins, predominantly in a dose-response manner. Overall, the results show that DBP can cause hepatic stress and damage and suggest a potential role for DBP in the development of non-alcoholic fatty liver disease, the most prevalent liver disease worldwide.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143605"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Persistent effects of di-n-butyl phthalate on liver transcriptome: Impaired energy and lipid metabolic pathways\",\"authors\":\"Eleftheria Theodoropoulou , Paula Pierozan , Francesco Marabita , Andrey Höglund , Oskar Karlsson\",\"doi\":\"10.1016/j.chemosphere.2024.143605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The environmental contaminant dibutyl phthalate (DBP) is reported to be hepatotoxic, but the underlying molecular pathways and pathological processes remain unclear. Here we used RNA-sequencing to characterize persistent hepatic transcriptional effects one week after the conclusion of five weeks oral exposure to 10 mg/kg/day or 100 mg/kg/day DBP in adult male mice. The exploratory transcriptome analysis demonstrated five differentially expressed genes (DEGs) in the 10 mg/kg/day group and 13 in the 100 mg/kg/day group. Gene Set Enrichment Analysis (GSEA), which identifies affected biological pathways rather than focusing solely on individual genes, revealed nine significantly enriched Reactome pathways shared by both DBP treatment groups. Additionally, we found 54 upregulated and one downregulated Reactome pathways in the 10 mg/kg/day DBP group, and 29 upregulated and 13 downregulated pathways in the 100 mg/kg/day DBP group. DBP exposure disrupted several key biological processes, including protein translation, protein folding, apoptosis, Hedgehog signaling, degradation of extracellular matrix and alterations in the energy/lipid metabolism. Subsequent liver tissue analysis confirmed that DBP exposure induced tissue disorganization, oxidative stress, lipid accumulation, increased TNF-α, ATP and glucokinase levels, and affected key metabolic proteins, predominantly in a dose-response manner. Overall, the results show that DBP can cause hepatic stress and damage and suggest a potential role for DBP in the development of non-alcoholic fatty liver disease, the most prevalent liver disease worldwide.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"368 \",\"pages\":\"Article 143605\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045653524025050\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524025050","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Persistent effects of di-n-butyl phthalate on liver transcriptome: Impaired energy and lipid metabolic pathways
The environmental contaminant dibutyl phthalate (DBP) is reported to be hepatotoxic, but the underlying molecular pathways and pathological processes remain unclear. Here we used RNA-sequencing to characterize persistent hepatic transcriptional effects one week after the conclusion of five weeks oral exposure to 10 mg/kg/day or 100 mg/kg/day DBP in adult male mice. The exploratory transcriptome analysis demonstrated five differentially expressed genes (DEGs) in the 10 mg/kg/day group and 13 in the 100 mg/kg/day group. Gene Set Enrichment Analysis (GSEA), which identifies affected biological pathways rather than focusing solely on individual genes, revealed nine significantly enriched Reactome pathways shared by both DBP treatment groups. Additionally, we found 54 upregulated and one downregulated Reactome pathways in the 10 mg/kg/day DBP group, and 29 upregulated and 13 downregulated pathways in the 100 mg/kg/day DBP group. DBP exposure disrupted several key biological processes, including protein translation, protein folding, apoptosis, Hedgehog signaling, degradation of extracellular matrix and alterations in the energy/lipid metabolism. Subsequent liver tissue analysis confirmed that DBP exposure induced tissue disorganization, oxidative stress, lipid accumulation, increased TNF-α, ATP and glucokinase levels, and affected key metabolic proteins, predominantly in a dose-response manner. Overall, the results show that DBP can cause hepatic stress and damage and suggest a potential role for DBP in the development of non-alcoholic fatty liver disease, the most prevalent liver disease worldwide.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.