有丝分裂灾难在肝癌耐药机制中的调控作用及其治疗潜力。

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Jianwang Li , Xiaozhen Cheng , Denggao Huang , Ronghua Cui
{"title":"有丝分裂灾难在肝癌耐药机制中的调控作用及其治疗潜力。","authors":"Jianwang Li ,&nbsp;Xiaozhen Cheng ,&nbsp;Denggao Huang ,&nbsp;Ronghua Cui","doi":"10.1016/j.biopha.2024.117598","DOIUrl":null,"url":null,"abstract":"<div><div>This review focuses on the role and underlying mechanisms of mitotic catastrophe (MC) in the regulation of drug resistance in hepatocellular carcinoma (HCC). HCC is one of the leading causes of cancer-related mortality worldwide, posing significant treatment challenges due to its high recurrence rates and drug resistance. Research suggests that MC, as a mechanism of cell death, plays a crucial role in enhancing the efficacy of HCC treatment by disrupting the replication and division mechanisms of tumor cells. The present review summarizes the molecular mechanisms of MC and its role in HCC drug resistance and explores the potential of combining MC with existing cancer therapies to improve treatment outcomes. Future research should focus on the in-depth elucidation of the molecular mechanisms of MC and its application in HCC therapy, providing new insights for the development of more effective treatments.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The regulatory role of mitotic catastrophe in hepatocellular carcinoma drug resistance mechanisms and its therapeutic potential\",\"authors\":\"Jianwang Li ,&nbsp;Xiaozhen Cheng ,&nbsp;Denggao Huang ,&nbsp;Ronghua Cui\",\"doi\":\"10.1016/j.biopha.2024.117598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review focuses on the role and underlying mechanisms of mitotic catastrophe (MC) in the regulation of drug resistance in hepatocellular carcinoma (HCC). HCC is one of the leading causes of cancer-related mortality worldwide, posing significant treatment challenges due to its high recurrence rates and drug resistance. Research suggests that MC, as a mechanism of cell death, plays a crucial role in enhancing the efficacy of HCC treatment by disrupting the replication and division mechanisms of tumor cells. The present review summarizes the molecular mechanisms of MC and its role in HCC drug resistance and explores the potential of combining MC with existing cancer therapies to improve treatment outcomes. Future research should focus on the in-depth elucidation of the molecular mechanisms of MC and its application in HCC therapy, providing new insights for the development of more effective treatments.</div></div>\",\"PeriodicalId\":8966,\"journal\":{\"name\":\"Biomedicine & Pharmacotherapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicine & Pharmacotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0753332224014847\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332224014847","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述重点探讨有丝分裂灾难(MC)在调节肝细胞癌(HCC)耐药性中的作用和内在机制。肝细胞癌是全球癌症相关死亡的主要原因之一,由于其高复发率和耐药性,给治疗带来了巨大挑战。研究表明,MC 作为一种细胞死亡机制,通过破坏肿瘤细胞的复制和分裂机制,在提高 HCC 治疗效果方面发挥着至关重要的作用。本综述总结了 MC 的分子机制及其在 HCC 耐药性中的作用,并探讨了将 MC 与现有癌症疗法相结合以改善治疗效果的潜力。今后的研究应侧重于深入阐明 MC 的分子机制及其在 HCC 治疗中的应用,为开发更有效的治疗方法提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The regulatory role of mitotic catastrophe in hepatocellular carcinoma drug resistance mechanisms and its therapeutic potential
This review focuses on the role and underlying mechanisms of mitotic catastrophe (MC) in the regulation of drug resistance in hepatocellular carcinoma (HCC). HCC is one of the leading causes of cancer-related mortality worldwide, posing significant treatment challenges due to its high recurrence rates and drug resistance. Research suggests that MC, as a mechanism of cell death, plays a crucial role in enhancing the efficacy of HCC treatment by disrupting the replication and division mechanisms of tumor cells. The present review summarizes the molecular mechanisms of MC and its role in HCC drug resistance and explores the potential of combining MC with existing cancer therapies to improve treatment outcomes. Future research should focus on the in-depth elucidation of the molecular mechanisms of MC and its application in HCC therapy, providing new insights for the development of more effective treatments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信