Berrin Çelik, Mehmet Zahid Genç, Mahmut Emin Çelik
{"title":"利用人工智能评估根尖周X光片上的根管充填长度。","authors":"Berrin Çelik, Mehmet Zahid Genç, Mahmut Emin Çelik","doi":"10.1007/s11282-024-00781-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This work proposes a novel method to evaluate root canal filling (RCF) success using artificial intelligence (AI) and image analysis techniques.</p><p><strong>Methods: </strong>1121 teeth with root canal treatment in 597 periapical radiographs (PARs) were anonymized and manually labeled. First, RCFs were segmented using 5 different state-of-the-art deep learning models based on convolutional neural networks. Their performances were compared based on the intersection over union (IoU), dice score and accuracy. Additionally, fivefold cross validation was applied for the best-performing model and their outputs were later used for further analysis. Secondly, images were processed via a graphical user interface (GUI) that allows dental clinicians to mark the apex of the tooth, which was used to find the distance between the apex of the tooth and the nearest RCF prediction of the deep learning model towards it. The distance can show whether the RCF is normal, short or long.</p><p><strong>Results: </strong>Model performances were evaluated by well-known evaluation metrics for segmentation such as IoU, Dice score and accuracy. CNN-based models can achieve an accuracy of 88%, an IoU of 79% and Dice score of 88% in segmenting root canal fillings.</p><p><strong>Conclusions: </strong>Our study demonstrates that AI-based solutions present accurate and reliable performance for root canal filling evaluation.</p>","PeriodicalId":56103,"journal":{"name":"Oral Radiology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of root canal filling length on periapical radiograph using artificial intelligence.\",\"authors\":\"Berrin Çelik, Mehmet Zahid Genç, Mahmut Emin Çelik\",\"doi\":\"10.1007/s11282-024-00781-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This work proposes a novel method to evaluate root canal filling (RCF) success using artificial intelligence (AI) and image analysis techniques.</p><p><strong>Methods: </strong>1121 teeth with root canal treatment in 597 periapical radiographs (PARs) were anonymized and manually labeled. First, RCFs were segmented using 5 different state-of-the-art deep learning models based on convolutional neural networks. Their performances were compared based on the intersection over union (IoU), dice score and accuracy. Additionally, fivefold cross validation was applied for the best-performing model and their outputs were later used for further analysis. Secondly, images were processed via a graphical user interface (GUI) that allows dental clinicians to mark the apex of the tooth, which was used to find the distance between the apex of the tooth and the nearest RCF prediction of the deep learning model towards it. The distance can show whether the RCF is normal, short or long.</p><p><strong>Results: </strong>Model performances were evaluated by well-known evaluation metrics for segmentation such as IoU, Dice score and accuracy. CNN-based models can achieve an accuracy of 88%, an IoU of 79% and Dice score of 88% in segmenting root canal fillings.</p><p><strong>Conclusions: </strong>Our study demonstrates that AI-based solutions present accurate and reliable performance for root canal filling evaluation.</p>\",\"PeriodicalId\":56103,\"journal\":{\"name\":\"Oral Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oral Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11282-024-00781-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oral Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11282-024-00781-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Evaluation of root canal filling length on periapical radiograph using artificial intelligence.
Objectives: This work proposes a novel method to evaluate root canal filling (RCF) success using artificial intelligence (AI) and image analysis techniques.
Methods: 1121 teeth with root canal treatment in 597 periapical radiographs (PARs) were anonymized and manually labeled. First, RCFs were segmented using 5 different state-of-the-art deep learning models based on convolutional neural networks. Their performances were compared based on the intersection over union (IoU), dice score and accuracy. Additionally, fivefold cross validation was applied for the best-performing model and their outputs were later used for further analysis. Secondly, images were processed via a graphical user interface (GUI) that allows dental clinicians to mark the apex of the tooth, which was used to find the distance between the apex of the tooth and the nearest RCF prediction of the deep learning model towards it. The distance can show whether the RCF is normal, short or long.
Results: Model performances were evaluated by well-known evaluation metrics for segmentation such as IoU, Dice score and accuracy. CNN-based models can achieve an accuracy of 88%, an IoU of 79% and Dice score of 88% in segmenting root canal fillings.
Conclusions: Our study demonstrates that AI-based solutions present accurate and reliable performance for root canal filling evaluation.
期刊介绍:
As the official English-language journal of the Japanese Society for Oral and Maxillofacial Radiology and the Asian Academy of Oral and Maxillofacial Radiology, Oral Radiology is intended to be a forum for international collaboration in head and neck diagnostic imaging and all related fields. Oral Radiology features cutting-edge research papers, review articles, case reports, and technical notes from both the clinical and experimental fields. As membership in the Society is not a prerequisite, contributions are welcome from researchers and clinicians worldwide.