Adéla Kábelová, Hana Malínská, Irena Marková, Martina Hüttl, František Liška, Blanka Chylíková, Ondřej Šeda
{"title":"代谢综合征中的槲皮素补充剂:在啮齿动物模型中与 Zbtb16 基因变异的营养遗传学相互作用。","authors":"Adéla Kábelová, Hana Malínská, Irena Marková, Martina Hüttl, František Liška, Blanka Chylíková, Ondřej Šeda","doi":"10.1186/s12263-024-00757-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Quercetin is a promising phytochemical in treating abnormalities associated with metabolic syndrome (MetS). This study aimed to explore the morphometric, metabolic, transcriptomic, and nutrigenetic responses to quercetin supplementation using two genetically distinct MetS models that only differ in the variant of the MetS-related Zbtb16 gene (Zinc Finger And BTB Domain Containing 16).</p><p><strong>Results: </strong>Quercetin supplementation led to a significant reduction in the relative weight of retroperitoneal adipose tissue in both investigated strains. A decrease in visceral (epididymal) fat mass, accompanied by an increase in brown fat mass after quercetin treatment, was observed exclusively in the SHR strain. While the levels of serum triglycerides decreased within both strains, the free fatty acids levels decreased in SHR-Zbtb16-Q rats only. The total serum cholesterol levels were not affected by quercetin in either of the two tested strains. While there were no significant changes in brown adipose tissue transcriptome, quercetin supplementation led to a pronounced gene expression shift in white retroperitoneal adipose tissue, particularly in SHR-Zbtb16-Q.</p><p><strong>Conclusion: </strong>Quercetin administration ameliorates certain MetS-related features; however, the efficacy of the treatment exhibits subtle variations depending on the specific variant of the Zbtb16 gene.</p>","PeriodicalId":55123,"journal":{"name":"Genes and Nutrition","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515271/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quercetin supplementation in metabolic syndrome: nutrigenetic interactions with the Zbtb16 gene variant in rodent models.\",\"authors\":\"Adéla Kábelová, Hana Malínská, Irena Marková, Martina Hüttl, František Liška, Blanka Chylíková, Ondřej Šeda\",\"doi\":\"10.1186/s12263-024-00757-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Quercetin is a promising phytochemical in treating abnormalities associated with metabolic syndrome (MetS). This study aimed to explore the morphometric, metabolic, transcriptomic, and nutrigenetic responses to quercetin supplementation using two genetically distinct MetS models that only differ in the variant of the MetS-related Zbtb16 gene (Zinc Finger And BTB Domain Containing 16).</p><p><strong>Results: </strong>Quercetin supplementation led to a significant reduction in the relative weight of retroperitoneal adipose tissue in both investigated strains. A decrease in visceral (epididymal) fat mass, accompanied by an increase in brown fat mass after quercetin treatment, was observed exclusively in the SHR strain. While the levels of serum triglycerides decreased within both strains, the free fatty acids levels decreased in SHR-Zbtb16-Q rats only. The total serum cholesterol levels were not affected by quercetin in either of the two tested strains. While there were no significant changes in brown adipose tissue transcriptome, quercetin supplementation led to a pronounced gene expression shift in white retroperitoneal adipose tissue, particularly in SHR-Zbtb16-Q.</p><p><strong>Conclusion: </strong>Quercetin administration ameliorates certain MetS-related features; however, the efficacy of the treatment exhibits subtle variations depending on the specific variant of the Zbtb16 gene.</p>\",\"PeriodicalId\":55123,\"journal\":{\"name\":\"Genes and Nutrition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515271/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12263-024-00757-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12263-024-00757-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Quercetin supplementation in metabolic syndrome: nutrigenetic interactions with the Zbtb16 gene variant in rodent models.
Background: Quercetin is a promising phytochemical in treating abnormalities associated with metabolic syndrome (MetS). This study aimed to explore the morphometric, metabolic, transcriptomic, and nutrigenetic responses to quercetin supplementation using two genetically distinct MetS models that only differ in the variant of the MetS-related Zbtb16 gene (Zinc Finger And BTB Domain Containing 16).
Results: Quercetin supplementation led to a significant reduction in the relative weight of retroperitoneal adipose tissue in both investigated strains. A decrease in visceral (epididymal) fat mass, accompanied by an increase in brown fat mass after quercetin treatment, was observed exclusively in the SHR strain. While the levels of serum triglycerides decreased within both strains, the free fatty acids levels decreased in SHR-Zbtb16-Q rats only. The total serum cholesterol levels were not affected by quercetin in either of the two tested strains. While there were no significant changes in brown adipose tissue transcriptome, quercetin supplementation led to a pronounced gene expression shift in white retroperitoneal adipose tissue, particularly in SHR-Zbtb16-Q.
Conclusion: Quercetin administration ameliorates certain MetS-related features; however, the efficacy of the treatment exhibits subtle variations depending on the specific variant of the Zbtb16 gene.
期刊介绍:
This journal examines the relationship between genetics and nutrition, with the ultimate goal of improving human health. It publishes original research articles and review articles on preclinical research data coming largely from animal, cell culture and other experimental models as well as critical evaluations of human experimental data to help deliver products with medically proven use.