Emilly S.S. Andres , Patrícia Passaglia , Wanderson S. Santos , Isis P. Trajano , Renato Nery Soriano , Lucas Miranda Marques , Glauce C. Nascimento , Elaine Del-Bel , Luiz G.S. Branco
{"title":"大麻二酚在 LPS 引起的发热中通过下调炎症介质发挥解热作用。","authors":"Emilly S.S. Andres , Patrícia Passaglia , Wanderson S. Santos , Isis P. Trajano , Renato Nery Soriano , Lucas Miranda Marques , Glauce C. Nascimento , Elaine Del-Bel , Luiz G.S. Branco","doi":"10.1016/j.pnpbp.2024.111178","DOIUrl":null,"url":null,"abstract":"<div><div>Contrasting to tetrahydrocannabinol (THC), cannabidiol (CBD) has virtually no psychoactive effects and thus presents a minor risk for abuse. Furthermore, emerging preclinical and clinical evidence indicates that CBD exerts several beneficial pharmacological effects, including anti-inflammatory and antioxidant properties. Even though fever is one of the responses associated with systemic inflammation, no previous study assessed the putative impact of CBD on lipopolysaccharide (LPS)-induced fever. The present study aimed to evaluate whether CBD exerts effects on febrile responses, by modulating the hypothalamic-pituitary-adrenal (HPA) axis, and the inflammatory reflex, in this response. CBD caused no change in euthermic mice, indicating that it does not alter euthermia. Conversely, CBD blunted all the assessed systemic inflammation parameters including fever (a hallmark of infection), plasma pro-inflammatory cytokines and prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) surges, and hypothalamic PGE<sub>2</sub> (the proximal mediator of fever) synthesis. Moreover, CBD also reduced LPS-induced increase in plasma corticosterone levels and spleen TNF-α. These data are consistent with the notion that CBD has antipyretic effects, reducing peripheral febrigenic signaling (plasma pro-inflammatory cytokines levels), and eventually down-modulating hypothalamic PGE<sub>2</sub> production, possibly in a corticosterone- and inflammatory reflex-dependent manner.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"136 ","pages":"Article 111178"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cannabidiol exerts antipyretic effects by downmodulating inflammatory mediators in LPS-induced fever\",\"authors\":\"Emilly S.S. Andres , Patrícia Passaglia , Wanderson S. Santos , Isis P. Trajano , Renato Nery Soriano , Lucas Miranda Marques , Glauce C. Nascimento , Elaine Del-Bel , Luiz G.S. Branco\",\"doi\":\"10.1016/j.pnpbp.2024.111178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Contrasting to tetrahydrocannabinol (THC), cannabidiol (CBD) has virtually no psychoactive effects and thus presents a minor risk for abuse. Furthermore, emerging preclinical and clinical evidence indicates that CBD exerts several beneficial pharmacological effects, including anti-inflammatory and antioxidant properties. Even though fever is one of the responses associated with systemic inflammation, no previous study assessed the putative impact of CBD on lipopolysaccharide (LPS)-induced fever. The present study aimed to evaluate whether CBD exerts effects on febrile responses, by modulating the hypothalamic-pituitary-adrenal (HPA) axis, and the inflammatory reflex, in this response. CBD caused no change in euthermic mice, indicating that it does not alter euthermia. Conversely, CBD blunted all the assessed systemic inflammation parameters including fever (a hallmark of infection), plasma pro-inflammatory cytokines and prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) surges, and hypothalamic PGE<sub>2</sub> (the proximal mediator of fever) synthesis. Moreover, CBD also reduced LPS-induced increase in plasma corticosterone levels and spleen TNF-α. These data are consistent with the notion that CBD has antipyretic effects, reducing peripheral febrigenic signaling (plasma pro-inflammatory cytokines levels), and eventually down-modulating hypothalamic PGE<sub>2</sub> production, possibly in a corticosterone- and inflammatory reflex-dependent manner.</div></div>\",\"PeriodicalId\":54549,\"journal\":{\"name\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"volume\":\"136 \",\"pages\":\"Article 111178\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S027858462400246X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027858462400246X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Cannabidiol exerts antipyretic effects by downmodulating inflammatory mediators in LPS-induced fever
Contrasting to tetrahydrocannabinol (THC), cannabidiol (CBD) has virtually no psychoactive effects and thus presents a minor risk for abuse. Furthermore, emerging preclinical and clinical evidence indicates that CBD exerts several beneficial pharmacological effects, including anti-inflammatory and antioxidant properties. Even though fever is one of the responses associated with systemic inflammation, no previous study assessed the putative impact of CBD on lipopolysaccharide (LPS)-induced fever. The present study aimed to evaluate whether CBD exerts effects on febrile responses, by modulating the hypothalamic-pituitary-adrenal (HPA) axis, and the inflammatory reflex, in this response. CBD caused no change in euthermic mice, indicating that it does not alter euthermia. Conversely, CBD blunted all the assessed systemic inflammation parameters including fever (a hallmark of infection), plasma pro-inflammatory cytokines and prostaglandin E2 (PGE2) surges, and hypothalamic PGE2 (the proximal mediator of fever) synthesis. Moreover, CBD also reduced LPS-induced increase in plasma corticosterone levels and spleen TNF-α. These data are consistent with the notion that CBD has antipyretic effects, reducing peripheral febrigenic signaling (plasma pro-inflammatory cytokines levels), and eventually down-modulating hypothalamic PGE2 production, possibly in a corticosterone- and inflammatory reflex-dependent manner.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.