Anna Shipman, Yan Gao, Desheng Liu, Shan Sun, Jingjing Zang, Peng Sun, Zoha Syed, Amol Bhagavathi, Eliot Smith, Timothy Erickson, Matthew Hill, Stephan Neuhauss, Sen-Fang Sui, Teresa Nicolson
{"title":"外泌体生物生成缺陷与斑马鱼 vps4a 突变体的感觉运动缺陷有关。","authors":"Anna Shipman, Yan Gao, Desheng Liu, Shan Sun, Jingjing Zang, Peng Sun, Zoha Syed, Amol Bhagavathi, Eliot Smith, Timothy Erickson, Matthew Hill, Stephan Neuhauss, Sen-Fang Sui, Teresa Nicolson","doi":"10.1523/JNEUROSCI.0680-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in human <i>VPS4A</i> are associated with neurodevelopmental defects, including motor delays and defective muscle tone. <i>VPS4A</i> encodes a AAA-ATPase required for membrane scission, but how mutations in <i>VPS4A</i> lead to impaired control of motor function is not known. Here we identified a mutation in zebrafish <i>vps4a</i>, T248I, that affects sensorimotor transformation. Biochemical analyses indicate that the T248I mutation reduces the ATPase activity of Vps4a and disassembly of ESCRT filaments, which mediate membrane scission. Consistent with the role for Vps4a in exosome biogenesis, <i>vps4a<sup>T248I</sup></i> larvae have enlarged endosomal compartments in the CNS and decreased numbers of circulating exosomes in brain ventricles. Resembling the central form of hypotonia in <i>VPS4A</i> patients, motor neurons and muscle cells are functional in mutant zebrafish. Both somatosensory and vestibular inputs robustly evoke tail and eye movements, respectively. In contrast, optomotor responses, vestibulospinal, and acoustic startle reflexes are absent or strongly impaired in <i>vps4a<sup>T248I</sup></i> larvae, indicating a greater sensitivity of these circuits to the T248I mutation. ERG recordings revealed intensity-dependent deficits in the retina, and in vivo calcium imaging of the auditory pathway identified a moderate reduction in afferent neuron activity, partially accounting for the severe motor impairments in mutant larvae. Further investigation of central pathways in <i>vps4a<sup>T248I</sup></i> mutants showed that activation of descending vestibulospinal and midbrain motor command neurons by sensory cues is strongly reduced. Our results suggest that defects in sensorimotor transformation underly the profound yet selective effects on motor reflexes resulting from the loss of membrane scission mediated by Vps4a.<b>Significance Statement</b> Here we present a T248I mutation in <i>vps4a</i>, which causes sensorimotor defects in zebrafish larvae. Vps4a plays a key role in membrane scission. Spanning biochemical to systems level analyses, our study indicates that a reduction in Vps4a enzymatic activity leads to abnormalities in membrane-scission dependent processes such as endosomal protein trafficking and exosome biogenesis, resulting in pronounced deficits in sensorimotor transformation of visual, auditory, and vestibular cues. We suggest that the mechanisms underlying this type of dysfunction in zebrafish may also contribute to the condition seen in human patients with <i>de novo</i> mutations in the human <i>VPS4A</i> orthologue.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defects in exosome biogenesis are associated with sensorimotor defects in zebrafish <i>vps4a</i> mutants.\",\"authors\":\"Anna Shipman, Yan Gao, Desheng Liu, Shan Sun, Jingjing Zang, Peng Sun, Zoha Syed, Amol Bhagavathi, Eliot Smith, Timothy Erickson, Matthew Hill, Stephan Neuhauss, Sen-Fang Sui, Teresa Nicolson\",\"doi\":\"10.1523/JNEUROSCI.0680-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations in human <i>VPS4A</i> are associated with neurodevelopmental defects, including motor delays and defective muscle tone. <i>VPS4A</i> encodes a AAA-ATPase required for membrane scission, but how mutations in <i>VPS4A</i> lead to impaired control of motor function is not known. Here we identified a mutation in zebrafish <i>vps4a</i>, T248I, that affects sensorimotor transformation. Biochemical analyses indicate that the T248I mutation reduces the ATPase activity of Vps4a and disassembly of ESCRT filaments, which mediate membrane scission. Consistent with the role for Vps4a in exosome biogenesis, <i>vps4a<sup>T248I</sup></i> larvae have enlarged endosomal compartments in the CNS and decreased numbers of circulating exosomes in brain ventricles. Resembling the central form of hypotonia in <i>VPS4A</i> patients, motor neurons and muscle cells are functional in mutant zebrafish. Both somatosensory and vestibular inputs robustly evoke tail and eye movements, respectively. In contrast, optomotor responses, vestibulospinal, and acoustic startle reflexes are absent or strongly impaired in <i>vps4a<sup>T248I</sup></i> larvae, indicating a greater sensitivity of these circuits to the T248I mutation. ERG recordings revealed intensity-dependent deficits in the retina, and in vivo calcium imaging of the auditory pathway identified a moderate reduction in afferent neuron activity, partially accounting for the severe motor impairments in mutant larvae. Further investigation of central pathways in <i>vps4a<sup>T248I</sup></i> mutants showed that activation of descending vestibulospinal and midbrain motor command neurons by sensory cues is strongly reduced. Our results suggest that defects in sensorimotor transformation underly the profound yet selective effects on motor reflexes resulting from the loss of membrane scission mediated by Vps4a.<b>Significance Statement</b> Here we present a T248I mutation in <i>vps4a</i>, which causes sensorimotor defects in zebrafish larvae. Vps4a plays a key role in membrane scission. Spanning biochemical to systems level analyses, our study indicates that a reduction in Vps4a enzymatic activity leads to abnormalities in membrane-scission dependent processes such as endosomal protein trafficking and exosome biogenesis, resulting in pronounced deficits in sensorimotor transformation of visual, auditory, and vestibular cues. We suggest that the mechanisms underlying this type of dysfunction in zebrafish may also contribute to the condition seen in human patients with <i>de novo</i> mutations in the human <i>VPS4A</i> orthologue.</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.0680-24.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0680-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Defects in exosome biogenesis are associated with sensorimotor defects in zebrafish vps4a mutants.
Mutations in human VPS4A are associated with neurodevelopmental defects, including motor delays and defective muscle tone. VPS4A encodes a AAA-ATPase required for membrane scission, but how mutations in VPS4A lead to impaired control of motor function is not known. Here we identified a mutation in zebrafish vps4a, T248I, that affects sensorimotor transformation. Biochemical analyses indicate that the T248I mutation reduces the ATPase activity of Vps4a and disassembly of ESCRT filaments, which mediate membrane scission. Consistent with the role for Vps4a in exosome biogenesis, vps4aT248I larvae have enlarged endosomal compartments in the CNS and decreased numbers of circulating exosomes in brain ventricles. Resembling the central form of hypotonia in VPS4A patients, motor neurons and muscle cells are functional in mutant zebrafish. Both somatosensory and vestibular inputs robustly evoke tail and eye movements, respectively. In contrast, optomotor responses, vestibulospinal, and acoustic startle reflexes are absent or strongly impaired in vps4aT248I larvae, indicating a greater sensitivity of these circuits to the T248I mutation. ERG recordings revealed intensity-dependent deficits in the retina, and in vivo calcium imaging of the auditory pathway identified a moderate reduction in afferent neuron activity, partially accounting for the severe motor impairments in mutant larvae. Further investigation of central pathways in vps4aT248I mutants showed that activation of descending vestibulospinal and midbrain motor command neurons by sensory cues is strongly reduced. Our results suggest that defects in sensorimotor transformation underly the profound yet selective effects on motor reflexes resulting from the loss of membrane scission mediated by Vps4a.Significance Statement Here we present a T248I mutation in vps4a, which causes sensorimotor defects in zebrafish larvae. Vps4a plays a key role in membrane scission. Spanning biochemical to systems level analyses, our study indicates that a reduction in Vps4a enzymatic activity leads to abnormalities in membrane-scission dependent processes such as endosomal protein trafficking and exosome biogenesis, resulting in pronounced deficits in sensorimotor transformation of visual, auditory, and vestibular cues. We suggest that the mechanisms underlying this type of dysfunction in zebrafish may also contribute to the condition seen in human patients with de novo mutations in the human VPS4A orthologue.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles