调查分析--ChatGPT 在波兰病理学专业考试中脱颖而出的能力。

IF 0.7 4区 医学 Q4 PATHOLOGY
Michał Bielówka, Jakub Kufel, Marcin Rojek, Dominika Kaczyńska, Łukasz Czogalik, Adam Mitręga, Wiktoria Bartnikowska, Dominika Kondoł, Kacper Palkij, Sylwia Mielcarska
{"title":"调查分析--ChatGPT 在波兰病理学专业考试中脱颖而出的能力。","authors":"Michał Bielówka, Jakub Kufel, Marcin Rojek, Dominika Kaczyńska, Łukasz Czogalik, Adam Mitręga, Wiktoria Bartnikowska, Dominika Kondoł, Kacper Palkij, Sylwia Mielcarska","doi":"10.5114/pjp.2024.143091","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the effectiveness of the ChatGPT-3.5 language model in providing correct answers to pathomorphology questions as required by the State Speciality Examination (PES). Artificial intelligence (AI) in medicine is generating increasing interest, but its potential needs thorough evaluation. A set of 119 exam questions by type and subtype were used, which were posed to the ChatGPT-3.5 model. Performance was analysed with regard to the success rate in different question categories and subtypes. ChatGPT-3.5 achieved a performance of 45.38%, which is significantly below the minimum PES pass threshold. The results achieved varied by question type and subtype, with better results in questions requiring \"comprehension and critical thinking\" than \"memory\". The analysis shows that, although ChatGPT-3.5 can be a useful teaching tool, its performance in providing correct answers to pathomorphology questions is significantly lower than that of human respondents. This conclusion highlights the need to further improve the AI model, taking into account the specificities of the medical field. Artificial intelligence can be helpful, but it cannot fully replace the experience and knowledge of specialists.</p>","PeriodicalId":49692,"journal":{"name":"Polish Journal of Pathology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigative analysis - ChatGPT's capability to excel in the Polish speciality exam in pathology.\",\"authors\":\"Michał Bielówka, Jakub Kufel, Marcin Rojek, Dominika Kaczyńska, Łukasz Czogalik, Adam Mitręga, Wiktoria Bartnikowska, Dominika Kondoł, Kacper Palkij, Sylwia Mielcarska\",\"doi\":\"10.5114/pjp.2024.143091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates the effectiveness of the ChatGPT-3.5 language model in providing correct answers to pathomorphology questions as required by the State Speciality Examination (PES). Artificial intelligence (AI) in medicine is generating increasing interest, but its potential needs thorough evaluation. A set of 119 exam questions by type and subtype were used, which were posed to the ChatGPT-3.5 model. Performance was analysed with regard to the success rate in different question categories and subtypes. ChatGPT-3.5 achieved a performance of 45.38%, which is significantly below the minimum PES pass threshold. The results achieved varied by question type and subtype, with better results in questions requiring \\\"comprehension and critical thinking\\\" than \\\"memory\\\". The analysis shows that, although ChatGPT-3.5 can be a useful teaching tool, its performance in providing correct answers to pathomorphology questions is significantly lower than that of human respondents. This conclusion highlights the need to further improve the AI model, taking into account the specificities of the medical field. Artificial intelligence can be helpful, but it cannot fully replace the experience and knowledge of specialists.</p>\",\"PeriodicalId\":49692,\"journal\":{\"name\":\"Polish Journal of Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5114/pjp.2024.143091\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/pjp.2024.143091","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了 ChatGPT-3.5 语言模型在按照国家专业考试(PES)要求提供病理形态学问题正确答案方面的有效性。人工智能(AI)在医学中的应用正引起越来越多的关注,但其潜力需要全面评估。我们使用了一套按类型和子类型划分的 119 道考题,并将其提交给 ChatGPT-3.5 模型。根据不同问题类别和子类的成功率对其性能进行了分析。ChatGPT-3.5 的成功率为 45.38%,明显低于 PES 的最低通过门槛。不同题型和子题型的成绩各不相同,要求 "理解和批判性思维 "的题目比要求 "记忆 "的题目成绩更好。分析表明,尽管 ChatGPT-3.5 可以作为一种有用的教学工具,但它在提供病理形态学问题正确答案方面的表现明显低于人类答题者。这一结论凸显了进一步改进人工智能模型的必要性,同时也考虑到了医学领域的特殊性。人工智能可以提供帮助,但不能完全取代专家的经验和知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An investigative analysis - ChatGPT's capability to excel in the Polish speciality exam in pathology.

This study evaluates the effectiveness of the ChatGPT-3.5 language model in providing correct answers to pathomorphology questions as required by the State Speciality Examination (PES). Artificial intelligence (AI) in medicine is generating increasing interest, but its potential needs thorough evaluation. A set of 119 exam questions by type and subtype were used, which were posed to the ChatGPT-3.5 model. Performance was analysed with regard to the success rate in different question categories and subtypes. ChatGPT-3.5 achieved a performance of 45.38%, which is significantly below the minimum PES pass threshold. The results achieved varied by question type and subtype, with better results in questions requiring "comprehension and critical thinking" than "memory". The analysis shows that, although ChatGPT-3.5 can be a useful teaching tool, its performance in providing correct answers to pathomorphology questions is significantly lower than that of human respondents. This conclusion highlights the need to further improve the AI model, taking into account the specificities of the medical field. Artificial intelligence can be helpful, but it cannot fully replace the experience and knowledge of specialists.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Polish Journal of Pathology is an official magazine of the Polish Association of Pathologists and the Polish Branch of the International Academy of Pathology. For the last 18 years of its presence on the market it has published more than 360 original papers and scientific reports, often quoted in reviewed foreign magazines. A new extended Scientific Board of the quarterly magazine comprises people with recognised achievements in pathomorphology and biology, including molecular biology and cytogenetics, as well as clinical oncology. Polish scientists who are working abroad and are international authorities have also been invited. Apart from presenting scientific reports, the magazine will also play a didactic and training role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信