Fei Zhang, Tian Gu, Jin Li, Yanqiu Zhu, Mingliang Chu, Qing Zhou, Jiemin Liu
{"title":"大黄素通过抑制 MCT1 来调节乳酸代谢,从而延缓非小细胞肺癌的进展。","authors":"Fei Zhang, Tian Gu, Jin Li, Yanqiu Zhu, Mingliang Chu, Qing Zhou, Jiemin Liu","doi":"10.1007/s13577-024-01140-4","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer is one of the most common malignant tumors in the world, with high incidence rate and mortality. Monocarboxylate transporter (MCT) 1 has been found to be widely expressed in various tumors and plays a crucial role in regulating energy metabolism. Emodin, as an important traditional Chinese medicine in China, has been reported to inhibit the progression of lung cancer. However, its potential mechanism has not been fully elucidated. The effects of emodin and MCT1 inhibitor AZD3965 on the proliferation, migration, and invasion of lung cancer cells were detected using cell counting kit-8 (CCK-8) assay, wound-healing assay, and transwell small chamber assay. The content of glucose, lactate, and pyruvate in the cell culture medium was detected using a glucose, lactate, and pyruvate detection kit, and also detected protein expression using western blotting. In addition, to investigate the effects of emodin and AZD3965 on lung cancer in vivo, we constructed nude mice subcutaneous transplant tumor model by subcutaneous injection of lung cancer cells. The results showed that emodin and AZD3965 could inhibit the proliferation, migration, and invasion of lung cancer cells. At the same time, they could inhibit the expression of MCT1 in lung cancer cells and promote the release of lactate, but did not affect the content of glucose and pyruvate. In vivo experiments had shown that emodin and AZD3965 could effectively inhibit the growth of lung cancer and inhibit the expression of MCT1. All in all, our data suggested that emodin inhibited the proliferation, migration, and invasion of lung cancer cells, possibly by inhibiting MCT1, providing important theoretical basis for elucidating the mechanism of emodin in treating lung cancer.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emodin regulated lactate metabolism by inhibiting MCT1 to delay non-small cell lung cancer progression.\",\"authors\":\"Fei Zhang, Tian Gu, Jin Li, Yanqiu Zhu, Mingliang Chu, Qing Zhou, Jiemin Liu\",\"doi\":\"10.1007/s13577-024-01140-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer is one of the most common malignant tumors in the world, with high incidence rate and mortality. Monocarboxylate transporter (MCT) 1 has been found to be widely expressed in various tumors and plays a crucial role in regulating energy metabolism. Emodin, as an important traditional Chinese medicine in China, has been reported to inhibit the progression of lung cancer. However, its potential mechanism has not been fully elucidated. The effects of emodin and MCT1 inhibitor AZD3965 on the proliferation, migration, and invasion of lung cancer cells were detected using cell counting kit-8 (CCK-8) assay, wound-healing assay, and transwell small chamber assay. The content of glucose, lactate, and pyruvate in the cell culture medium was detected using a glucose, lactate, and pyruvate detection kit, and also detected protein expression using western blotting. In addition, to investigate the effects of emodin and AZD3965 on lung cancer in vivo, we constructed nude mice subcutaneous transplant tumor model by subcutaneous injection of lung cancer cells. The results showed that emodin and AZD3965 could inhibit the proliferation, migration, and invasion of lung cancer cells. At the same time, they could inhibit the expression of MCT1 in lung cancer cells and promote the release of lactate, but did not affect the content of glucose and pyruvate. In vivo experiments had shown that emodin and AZD3965 could effectively inhibit the growth of lung cancer and inhibit the expression of MCT1. All in all, our data suggested that emodin inhibited the proliferation, migration, and invasion of lung cancer cells, possibly by inhibiting MCT1, providing important theoretical basis for elucidating the mechanism of emodin in treating lung cancer.</p>\",\"PeriodicalId\":49194,\"journal\":{\"name\":\"Human Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13577-024-01140-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-024-01140-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Emodin regulated lactate metabolism by inhibiting MCT1 to delay non-small cell lung cancer progression.
Lung cancer is one of the most common malignant tumors in the world, with high incidence rate and mortality. Monocarboxylate transporter (MCT) 1 has been found to be widely expressed in various tumors and plays a crucial role in regulating energy metabolism. Emodin, as an important traditional Chinese medicine in China, has been reported to inhibit the progression of lung cancer. However, its potential mechanism has not been fully elucidated. The effects of emodin and MCT1 inhibitor AZD3965 on the proliferation, migration, and invasion of lung cancer cells were detected using cell counting kit-8 (CCK-8) assay, wound-healing assay, and transwell small chamber assay. The content of glucose, lactate, and pyruvate in the cell culture medium was detected using a glucose, lactate, and pyruvate detection kit, and also detected protein expression using western blotting. In addition, to investigate the effects of emodin and AZD3965 on lung cancer in vivo, we constructed nude mice subcutaneous transplant tumor model by subcutaneous injection of lung cancer cells. The results showed that emodin and AZD3965 could inhibit the proliferation, migration, and invasion of lung cancer cells. At the same time, they could inhibit the expression of MCT1 in lung cancer cells and promote the release of lactate, but did not affect the content of glucose and pyruvate. In vivo experiments had shown that emodin and AZD3965 could effectively inhibit the growth of lung cancer and inhibit the expression of MCT1. All in all, our data suggested that emodin inhibited the proliferation, migration, and invasion of lung cancer cells, possibly by inhibiting MCT1, providing important theoretical basis for elucidating the mechanism of emodin in treating lung cancer.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.