{"title":"人类胃肠道细胞对微量二氧化硅形态的细胞反应比较评估:对职业健康的启示","authors":"Mohammad Z Yamin, James Y Liu, Christie M Sayes","doi":"10.3390/ijerph21101376","DOIUrl":null,"url":null,"abstract":"<p><p>Silicon dioxide (SiO<sub>2</sub>), commonly known as silica, is a naturally occurring mineral extracted from the Earth's crust. It is widely used in commercial products such as food, medicine, and dental ceramics. There are few studies on the health effects of pyrogenic and colloidal silica after ingestion. No research has compared the impact of microscale morphologies on mitochondrial activity in colon cells after acute exposure. The results show that crystalline and amorphous silica had a concentration-independent effect on cells, with an initial increase in mitochondrial activity followed by a decrease. Vitreous silica did not affect cells. Diatomaceous earth and pyrogenic silica had a concentration-dependent response, causing a reduction in mitochondrial activity as concentration increased. Diatomaceous earth triggered the highest cellular response, with mitochondrial activity ranging from 78.84% ± 12.34 at the highest concentration (1000 ppm) to 62.54% ± 17.43 at the lowest concentration (0.01 ppm) and an average H<sub>2</sub>O<sub>2</sub> concentration of 1.48 ± 0.15 RLUs. This research advances our understanding of silica's impact on human gastrointestinal cells, highlighting the need for ongoing exploration. These findings can improve risk mitigation strategies in silica-exposed environments.</p>","PeriodicalId":49056,"journal":{"name":"International Journal of Environmental Research and Public Health","volume":"21 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508045/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative Assessment of Cellular Responses to Microscale Silica Morphologies in Human Gastrointestinal Cells: Insights for Occupational Health.\",\"authors\":\"Mohammad Z Yamin, James Y Liu, Christie M Sayes\",\"doi\":\"10.3390/ijerph21101376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silicon dioxide (SiO<sub>2</sub>), commonly known as silica, is a naturally occurring mineral extracted from the Earth's crust. It is widely used in commercial products such as food, medicine, and dental ceramics. There are few studies on the health effects of pyrogenic and colloidal silica after ingestion. No research has compared the impact of microscale morphologies on mitochondrial activity in colon cells after acute exposure. The results show that crystalline and amorphous silica had a concentration-independent effect on cells, with an initial increase in mitochondrial activity followed by a decrease. Vitreous silica did not affect cells. Diatomaceous earth and pyrogenic silica had a concentration-dependent response, causing a reduction in mitochondrial activity as concentration increased. Diatomaceous earth triggered the highest cellular response, with mitochondrial activity ranging from 78.84% ± 12.34 at the highest concentration (1000 ppm) to 62.54% ± 17.43 at the lowest concentration (0.01 ppm) and an average H<sub>2</sub>O<sub>2</sub> concentration of 1.48 ± 0.15 RLUs. This research advances our understanding of silica's impact on human gastrointestinal cells, highlighting the need for ongoing exploration. These findings can improve risk mitigation strategies in silica-exposed environments.</p>\",\"PeriodicalId\":49056,\"journal\":{\"name\":\"International Journal of Environmental Research and Public Health\",\"volume\":\"21 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508045/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Research and Public Health\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/ijerph21101376\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Research and Public Health","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/ijerph21101376","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Assessment of Cellular Responses to Microscale Silica Morphologies in Human Gastrointestinal Cells: Insights for Occupational Health.
Silicon dioxide (SiO2), commonly known as silica, is a naturally occurring mineral extracted from the Earth's crust. It is widely used in commercial products such as food, medicine, and dental ceramics. There are few studies on the health effects of pyrogenic and colloidal silica after ingestion. No research has compared the impact of microscale morphologies on mitochondrial activity in colon cells after acute exposure. The results show that crystalline and amorphous silica had a concentration-independent effect on cells, with an initial increase in mitochondrial activity followed by a decrease. Vitreous silica did not affect cells. Diatomaceous earth and pyrogenic silica had a concentration-dependent response, causing a reduction in mitochondrial activity as concentration increased. Diatomaceous earth triggered the highest cellular response, with mitochondrial activity ranging from 78.84% ± 12.34 at the highest concentration (1000 ppm) to 62.54% ± 17.43 at the lowest concentration (0.01 ppm) and an average H2O2 concentration of 1.48 ± 0.15 RLUs. This research advances our understanding of silica's impact on human gastrointestinal cells, highlighting the need for ongoing exploration. These findings can improve risk mitigation strategies in silica-exposed environments.
期刊介绍:
International Journal of Environmental Research and Public Health (IJERPH) (ISSN 1660-4601) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes, and short communications in the interdisciplinary area of environmental health sciences and public health. It links several scientific disciplines including biology, biochemistry, biotechnology, cellular and molecular biology, chemistry, computer science, ecology, engineering, epidemiology, genetics, immunology, microbiology, oncology, pathology, pharmacology, and toxicology, in an integrated fashion, to address critical issues related to environmental quality and public health. Therefore, IJERPH focuses on the publication of scientific and technical information on the impacts of natural phenomena and anthropogenic factors on the quality of our environment, the interrelationships between environmental health and the quality of life, as well as the socio-cultural, political, economic, and legal considerations related to environmental stewardship and public health.
The 2018 IJERPH Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJERPH. See full details at http://www.mdpi.com/journal/ijerph/awards.