Shin-Hye Kim, Hye-Lim Shin, Tae Hyun Son, So-An Lim, Dongsoo Kim, Jun-Hyuck Yoon, Hyunmo Choi, Hwan-Gyu Kim, Sik-Won Choi
{"title":"柞树橡子皮提取物通过促进成纤维细胞迁移和抑制皮肤炎症促进伤口再上皮化","authors":"Shin-Hye Kim, Hye-Lim Shin, Tae Hyun Son, So-An Lim, Dongsoo Kim, Jun-Hyuck Yoon, Hyunmo Choi, Hwan-Gyu Kim, Sik-Won Choi","doi":"10.3390/biology13100775","DOIUrl":null,"url":null,"abstract":"<p><p>The skin, recognized as the largest organ in the human body, serves a vital function in safeguarding against external threats. Severe damage to the skin can pose significant risks to human health. There is an urgent requirement for safe and effective therapies for wound healing. While phytotherapy has been widely utilized for various health conditions, the potential of <i>Quercus glauca</i> in promoting wound healing has not been thoroughly explored. <i>Q. glauca</i> is a cultivated crop known for its abundance of bioactive compounds. This study examined the wound-healing properties of <i>Quercus glauca</i> acorn seed coat water extract (QGASE). The findings from the study suggest that QGASE promotes wound closure in HF cells by upregulating essential markers related to the wound-healing process. Additionally, QGASE demonstrates antioxidant effects, mitigating oxidative stress and aiding in recovery from injuries induced by H<sub>2</sub>O<sub>2</sub>. In vivo experiments provide additional substantiation supporting the efficacy of QGASE in enhancing wound healing. The collective results indicate that QGASE may be a promising candidate for the development of innovative therapeutic strategies aimed at enhancing skin wound repair.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505045/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Quercus glauca</i> Acorn Seed Coat Extract Promotes Wound Re-Epithelialization by Facilitating Fibroblast Migration and Inhibiting Dermal Inflammation.\",\"authors\":\"Shin-Hye Kim, Hye-Lim Shin, Tae Hyun Son, So-An Lim, Dongsoo Kim, Jun-Hyuck Yoon, Hyunmo Choi, Hwan-Gyu Kim, Sik-Won Choi\",\"doi\":\"10.3390/biology13100775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The skin, recognized as the largest organ in the human body, serves a vital function in safeguarding against external threats. Severe damage to the skin can pose significant risks to human health. There is an urgent requirement for safe and effective therapies for wound healing. While phytotherapy has been widely utilized for various health conditions, the potential of <i>Quercus glauca</i> in promoting wound healing has not been thoroughly explored. <i>Q. glauca</i> is a cultivated crop known for its abundance of bioactive compounds. This study examined the wound-healing properties of <i>Quercus glauca</i> acorn seed coat water extract (QGASE). The findings from the study suggest that QGASE promotes wound closure in HF cells by upregulating essential markers related to the wound-healing process. Additionally, QGASE demonstrates antioxidant effects, mitigating oxidative stress and aiding in recovery from injuries induced by H<sub>2</sub>O<sub>2</sub>. In vivo experiments provide additional substantiation supporting the efficacy of QGASE in enhancing wound healing. The collective results indicate that QGASE may be a promising candidate for the development of innovative therapeutic strategies aimed at enhancing skin wound repair.</p>\",\"PeriodicalId\":48624,\"journal\":{\"name\":\"Biology-Basel\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505045/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biology13100775\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13100775","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Quercus glauca Acorn Seed Coat Extract Promotes Wound Re-Epithelialization by Facilitating Fibroblast Migration and Inhibiting Dermal Inflammation.
The skin, recognized as the largest organ in the human body, serves a vital function in safeguarding against external threats. Severe damage to the skin can pose significant risks to human health. There is an urgent requirement for safe and effective therapies for wound healing. While phytotherapy has been widely utilized for various health conditions, the potential of Quercus glauca in promoting wound healing has not been thoroughly explored. Q. glauca is a cultivated crop known for its abundance of bioactive compounds. This study examined the wound-healing properties of Quercus glauca acorn seed coat water extract (QGASE). The findings from the study suggest that QGASE promotes wound closure in HF cells by upregulating essential markers related to the wound-healing process. Additionally, QGASE demonstrates antioxidant effects, mitigating oxidative stress and aiding in recovery from injuries induced by H2O2. In vivo experiments provide additional substantiation supporting the efficacy of QGASE in enhancing wound healing. The collective results indicate that QGASE may be a promising candidate for the development of innovative therapeutic strategies aimed at enhancing skin wound repair.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.