{"title":"草酸钙晶体与肾小管上皮细胞相互作用过程中内质网应激的参与。","authors":"Sen-Yuan Hong, Lin-Tao Miao, Bao-Long Qin","doi":"10.3390/biology13100774","DOIUrl":null,"url":null,"abstract":"<p><p>Our study aimed to elucidate the mechanisms behind the interaction between calcium oxalate (CaOx) crystals and renal tubular epithelial cells through transcriptome sequencing analysis. HK-2 cells were stimulated with or without CaOx monohydrate crystals and subjected to RNA-seq to assess the effects of CaOx crystals on gene expression changes, key pathways, and molecular players during this interaction. A total of 629 differentially expressed genes (DEGs) were identified between the control group and experimental group, with 491 genes up-regulated and 138 down-regulated. Functional enrichment analysis indicated that the DEGs were significantly associated with endoplasmic reticulum stress (ERS) and unfolded protein response. To validate our findings, we compared our results with the public dataset GSE73680 and confirmed the increased expression of two ERS-related DEGs, CHAC1 and FGF21, in renal papillary tissues from patients with CaOx stones. Collectively, these findings suggest that ERS plays a crucial role in the crystal-cell interaction and highlight the potential for developing therapeutic strategies aimed at reducing CaOx stone formation by targeting ERS-related molecules and pathways.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504059/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Involvement of Endoplasmic Reticulum Stress during the Interaction between Calcium Oxalate Crystals and Renal Tubular Epithelial Cells.\",\"authors\":\"Sen-Yuan Hong, Lin-Tao Miao, Bao-Long Qin\",\"doi\":\"10.3390/biology13100774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our study aimed to elucidate the mechanisms behind the interaction between calcium oxalate (CaOx) crystals and renal tubular epithelial cells through transcriptome sequencing analysis. HK-2 cells were stimulated with or without CaOx monohydrate crystals and subjected to RNA-seq to assess the effects of CaOx crystals on gene expression changes, key pathways, and molecular players during this interaction. A total of 629 differentially expressed genes (DEGs) were identified between the control group and experimental group, with 491 genes up-regulated and 138 down-regulated. Functional enrichment analysis indicated that the DEGs were significantly associated with endoplasmic reticulum stress (ERS) and unfolded protein response. To validate our findings, we compared our results with the public dataset GSE73680 and confirmed the increased expression of two ERS-related DEGs, CHAC1 and FGF21, in renal papillary tissues from patients with CaOx stones. Collectively, these findings suggest that ERS plays a crucial role in the crystal-cell interaction and highlight the potential for developing therapeutic strategies aimed at reducing CaOx stone formation by targeting ERS-related molecules and pathways.</p>\",\"PeriodicalId\":48624,\"journal\":{\"name\":\"Biology-Basel\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504059/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biology13100774\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13100774","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
The Involvement of Endoplasmic Reticulum Stress during the Interaction between Calcium Oxalate Crystals and Renal Tubular Epithelial Cells.
Our study aimed to elucidate the mechanisms behind the interaction between calcium oxalate (CaOx) crystals and renal tubular epithelial cells through transcriptome sequencing analysis. HK-2 cells were stimulated with or without CaOx monohydrate crystals and subjected to RNA-seq to assess the effects of CaOx crystals on gene expression changes, key pathways, and molecular players during this interaction. A total of 629 differentially expressed genes (DEGs) were identified between the control group and experimental group, with 491 genes up-regulated and 138 down-regulated. Functional enrichment analysis indicated that the DEGs were significantly associated with endoplasmic reticulum stress (ERS) and unfolded protein response. To validate our findings, we compared our results with the public dataset GSE73680 and confirmed the increased expression of two ERS-related DEGs, CHAC1 and FGF21, in renal papillary tissues from patients with CaOx stones. Collectively, these findings suggest that ERS plays a crucial role in the crystal-cell interaction and highlight the potential for developing therapeutic strategies aimed at reducing CaOx stone formation by targeting ERS-related molecules and pathways.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.