确定性侧向位移微通道的有效边界校正以改善细胞分离:数值和实验研究。

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Shaghayegh Mirhosseini, Mohammadmahdi Eskandarisani, Aryanaz Faghih Nasiri, Fatemeh Khatami, Akram Mirzaei, Majid Badieirostami, Seyed Mohammad Kazem Aghamir, Mohammadreza Kolahdouz
{"title":"确定性侧向位移微通道的有效边界校正以改善细胞分离:数值和实验研究。","authors":"Shaghayegh Mirhosseini, Mohammadmahdi Eskandarisani, Aryanaz Faghih Nasiri, Fatemeh Khatami, Akram Mirzaei, Majid Badieirostami, Seyed Mohammad Kazem Aghamir, Mohammadreza Kolahdouz","doi":"10.3390/bios14100466","DOIUrl":null,"url":null,"abstract":"<p><p>Particle separation and sorting techniques based on microfluidics have found extensive applications and are increasingly gaining prominence. This research presents the design and fabrication of a microfluidic device for separating cells using deterministic lateral displacement (DLD), enabling accuracy and continuity while being size-based. Nevertheless, it remains demanding, to completely reverse the detrimental effects of the boundaries that disturb the fluidic flow in the channel and reduce particle separation efficiency. This study introduces a novel approach to enhance the boundary structure of channels. By using this design, separation efficiency is boosted, and the fluid behavior around the walls is improved. The boundary correction (BC) enhances the operation of the microchannel and is very effective in microchannels. With boundary correction, the device exhibited improved separation efficiencies, but in its absence, separation efficiencies dropped. The collected microscopic images of the isolation of prostate cancer cell lines and red blood cells revealed promising outcomes. The efficiency of circulating tumor cell (CTC) throughput in the microfluidic channel, quantified as the ratio or proportion of tumor cells exiting the channel to cells entering it, exceeds 93%. Moreover, the efficiency of CTC isolation, expressed as the proportion of tumor cells from the upper outlet of the microfluidic channel to all cells, is over 89%. Additionally, the efficiency of red blood cell isolation, evaluated as the ratio of red blood cells from the lower outlet of the microfluidic channel to all cells, surpasses 77%. While using the same DLD separator without boundary correction reduced the separation efficiency by around 5%.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506467/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effective Boundary Correction for Deterministic Lateral Displacement Microchannels to Improve Cell Separation: A Numerical and Experimental Study.\",\"authors\":\"Shaghayegh Mirhosseini, Mohammadmahdi Eskandarisani, Aryanaz Faghih Nasiri, Fatemeh Khatami, Akram Mirzaei, Majid Badieirostami, Seyed Mohammad Kazem Aghamir, Mohammadreza Kolahdouz\",\"doi\":\"10.3390/bios14100466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Particle separation and sorting techniques based on microfluidics have found extensive applications and are increasingly gaining prominence. This research presents the design and fabrication of a microfluidic device for separating cells using deterministic lateral displacement (DLD), enabling accuracy and continuity while being size-based. Nevertheless, it remains demanding, to completely reverse the detrimental effects of the boundaries that disturb the fluidic flow in the channel and reduce particle separation efficiency. This study introduces a novel approach to enhance the boundary structure of channels. By using this design, separation efficiency is boosted, and the fluid behavior around the walls is improved. The boundary correction (BC) enhances the operation of the microchannel and is very effective in microchannels. With boundary correction, the device exhibited improved separation efficiencies, but in its absence, separation efficiencies dropped. The collected microscopic images of the isolation of prostate cancer cell lines and red blood cells revealed promising outcomes. The efficiency of circulating tumor cell (CTC) throughput in the microfluidic channel, quantified as the ratio or proportion of tumor cells exiting the channel to cells entering it, exceeds 93%. Moreover, the efficiency of CTC isolation, expressed as the proportion of tumor cells from the upper outlet of the microfluidic channel to all cells, is over 89%. Additionally, the efficiency of red blood cell isolation, evaluated as the ratio of red blood cells from the lower outlet of the microfluidic channel to all cells, surpasses 77%. While using the same DLD separator without boundary correction reduced the separation efficiency by around 5%.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506467/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios14100466\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100466","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于微流控技术的粒子分离和分拣技术已得到广泛应用,并日益受到重视。本研究介绍了一种利用确定性横向位移(DLD)分离细胞的微流体设备的设计与制造,该设备在基于尺寸的基础上实现了精确性和连续性。然而,要完全扭转边界的有害影响,使其扰乱通道中的流体流动并降低颗粒分离效率,仍然是一项艰巨的任务。本研究介绍了一种增强通道边界结构的新方法。通过使用这种设计,分离效率得到了提高,壁面周围的流体行为也得到了改善。边界校正(BC)增强了微通道的运行,在微通道中非常有效。有了边界校正,设备的分离效率得到提高,但如果没有边界校正,分离效率则会下降。收集到的前列腺癌细胞系和红细胞分离显微图像显示了良好的结果。循环肿瘤细胞(CTC)在微流体通道中的吞吐效率超过了 93%,其量化指标是流出通道的肿瘤细胞与进入通道的细胞的比率或比例。此外,以微流体通道上部出口的肿瘤细胞占所有细胞的比例表示的 CTC 分离效率超过 89%。此外,以来自微流体通道下部出口的红细胞与所有细胞的比例表示的红细胞分离效率也超过了 77%。而使用未进行边界校正的相同 DLD 分离器,分离效率降低了约 5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Boundary Correction for Deterministic Lateral Displacement Microchannels to Improve Cell Separation: A Numerical and Experimental Study.

Particle separation and sorting techniques based on microfluidics have found extensive applications and are increasingly gaining prominence. This research presents the design and fabrication of a microfluidic device for separating cells using deterministic lateral displacement (DLD), enabling accuracy and continuity while being size-based. Nevertheless, it remains demanding, to completely reverse the detrimental effects of the boundaries that disturb the fluidic flow in the channel and reduce particle separation efficiency. This study introduces a novel approach to enhance the boundary structure of channels. By using this design, separation efficiency is boosted, and the fluid behavior around the walls is improved. The boundary correction (BC) enhances the operation of the microchannel and is very effective in microchannels. With boundary correction, the device exhibited improved separation efficiencies, but in its absence, separation efficiencies dropped. The collected microscopic images of the isolation of prostate cancer cell lines and red blood cells revealed promising outcomes. The efficiency of circulating tumor cell (CTC) throughput in the microfluidic channel, quantified as the ratio or proportion of tumor cells exiting the channel to cells entering it, exceeds 93%. Moreover, the efficiency of CTC isolation, expressed as the proportion of tumor cells from the upper outlet of the microfluidic channel to all cells, is over 89%. Additionally, the efficiency of red blood cell isolation, evaluated as the ratio of red blood cells from the lower outlet of the microfluidic channel to all cells, surpasses 77%. While using the same DLD separator without boundary correction reduced the separation efficiency by around 5%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信