{"title":"蛋白质组和泛基因组综合分析揭示了微藻Isochrysis galbana和相关细菌群落对2,6-二叔丁基对甲酚(BHT)胁迫的变化。","authors":"Linke Guo, Shuangwei Li, Dongle Cheng, Xiao Lu, Xinying Gao, Linlin Zhang, Jianjiang Lu","doi":"10.1007/s11274-024-04171-z","DOIUrl":null,"url":null,"abstract":"<p><p>The phenolic antioxidant 2,6-Di-tert-butyl-p-cresol (BHT) has been detected in various environments and is considered a potential threat to aquatic organisms. Algal-bacterial interactions are crucial for maintaining ecosystem balance and elemental cycling, but their response to BHT remains to be investigated. This study analyzed the physiological and biochemical responses of the microalga Isochrysis galbana and the changes of associated bacterial communities under different concentrations of BHT stress. Results showed that the biomass of I. galbana exhibited a decreasing trend with increasing BHT concentrations up to 40 mg/L. The reduction in chlorophyll, carotenoid, and soluble protein content of microalgal cells was also observed under BHT stress. The production of malondialdehyde and the activities of superoxide dismutase, peroxidase, and catalase were further determined. Scanning electron microscopy analysis revealed that BHT caused surface rupture of the algal cells and loss of intracellular nutrients. Proteomic analysis demonstrated the upregulation of photosynthesis and citric acid cycle pathways as a response to BHT stress. Additionally, BHT significantly increased the relative abundance of specific bacteria in the phycosphere, including Marivita, Halomonas, Marinobacter, and Alteromonas. Further experiments confirmed that these bacteria had the ability to utilize BHT as the sole carbon resource for growth, and genes related to the degradation of phenolic compounds were detected through pangenome analysis.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"364"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated proteome and pangenome analysis revealed the variation of microalga Isochrysis galbana and associated bacterial community to 2,6-Di-tert-butyl-p-cresol (BHT) stress.\",\"authors\":\"Linke Guo, Shuangwei Li, Dongle Cheng, Xiao Lu, Xinying Gao, Linlin Zhang, Jianjiang Lu\",\"doi\":\"10.1007/s11274-024-04171-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The phenolic antioxidant 2,6-Di-tert-butyl-p-cresol (BHT) has been detected in various environments and is considered a potential threat to aquatic organisms. Algal-bacterial interactions are crucial for maintaining ecosystem balance and elemental cycling, but their response to BHT remains to be investigated. This study analyzed the physiological and biochemical responses of the microalga Isochrysis galbana and the changes of associated bacterial communities under different concentrations of BHT stress. Results showed that the biomass of I. galbana exhibited a decreasing trend with increasing BHT concentrations up to 40 mg/L. The reduction in chlorophyll, carotenoid, and soluble protein content of microalgal cells was also observed under BHT stress. The production of malondialdehyde and the activities of superoxide dismutase, peroxidase, and catalase were further determined. Scanning electron microscopy analysis revealed that BHT caused surface rupture of the algal cells and loss of intracellular nutrients. Proteomic analysis demonstrated the upregulation of photosynthesis and citric acid cycle pathways as a response to BHT stress. Additionally, BHT significantly increased the relative abundance of specific bacteria in the phycosphere, including Marivita, Halomonas, Marinobacter, and Alteromonas. Further experiments confirmed that these bacteria had the ability to utilize BHT as the sole carbon resource for growth, and genes related to the degradation of phenolic compounds were detected through pangenome analysis.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"40 11\",\"pages\":\"364\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04171-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04171-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Integrated proteome and pangenome analysis revealed the variation of microalga Isochrysis galbana and associated bacterial community to 2,6-Di-tert-butyl-p-cresol (BHT) stress.
The phenolic antioxidant 2,6-Di-tert-butyl-p-cresol (BHT) has been detected in various environments and is considered a potential threat to aquatic organisms. Algal-bacterial interactions are crucial for maintaining ecosystem balance and elemental cycling, but their response to BHT remains to be investigated. This study analyzed the physiological and biochemical responses of the microalga Isochrysis galbana and the changes of associated bacterial communities under different concentrations of BHT stress. Results showed that the biomass of I. galbana exhibited a decreasing trend with increasing BHT concentrations up to 40 mg/L. The reduction in chlorophyll, carotenoid, and soluble protein content of microalgal cells was also observed under BHT stress. The production of malondialdehyde and the activities of superoxide dismutase, peroxidase, and catalase were further determined. Scanning electron microscopy analysis revealed that BHT caused surface rupture of the algal cells and loss of intracellular nutrients. Proteomic analysis demonstrated the upregulation of photosynthesis and citric acid cycle pathways as a response to BHT stress. Additionally, BHT significantly increased the relative abundance of specific bacteria in the phycosphere, including Marivita, Halomonas, Marinobacter, and Alteromonas. Further experiments confirmed that these bacteria had the ability to utilize BHT as the sole carbon resource for growth, and genes related to the degradation of phenolic compounds were detected through pangenome analysis.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.