José Crossa, Osval A Montesinos-Lopez, Germano Costa-Neto, Paolo Vitale, Johannes W R Martini, Daniel Runcie, Roberto Fritsche-Neto, Abelardo Montesinos-Lopez, Paulino Pérez-Rodríguez, Guillermo Gerard, Susanna Dreisigacker, Leonardo Crespo-Herrera, Carolina Saint Pierre, Morten Lillemo, Jaime Cuevas, Alison Bentley, Rodomiro Ortiz
{"title":"机器学习算法将大数据转化为预测育种的准确性。","authors":"José Crossa, Osval A Montesinos-Lopez, Germano Costa-Neto, Paolo Vitale, Johannes W R Martini, Daniel Runcie, Roberto Fritsche-Neto, Abelardo Montesinos-Lopez, Paulino Pérez-Rodríguez, Guillermo Gerard, Susanna Dreisigacker, Leonardo Crespo-Herrera, Carolina Saint Pierre, Morten Lillemo, Jaime Cuevas, Alison Bentley, Rodomiro Ortiz","doi":"10.1016/j.tplants.2024.09.011","DOIUrl":null,"url":null,"abstract":"<p><p>Statistical machine learning (ML) extracts patterns from extensive genomic, phenotypic, and environmental data. ML algorithms automatically identify relevant features and use cross-validation to ensure robust models and improve prediction reliability in new lines. Furthermore, ML analyses of genotype-by-environment (G×E) interactions can offer insights into the genetic factors that affect performance in specific environments. By leveraging historical breeding data, ML streamlines strategies and automates analyses to reveal genomic patterns. In this review we examine the transformative impact of big data, including multi-trait genomics, phenomics, and environmental covariables, on genomic-enabled prediction in plant breeding. We discuss how big data and ML are revolutionizing the field by enhancing prediction accuracy, deepening our understanding of G×E interactions, and optimizing breeding strategies through the analysis of extensive and diverse datasets.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning algorithms translate big data into predictive breeding accuracy.\",\"authors\":\"José Crossa, Osval A Montesinos-Lopez, Germano Costa-Neto, Paolo Vitale, Johannes W R Martini, Daniel Runcie, Roberto Fritsche-Neto, Abelardo Montesinos-Lopez, Paulino Pérez-Rodríguez, Guillermo Gerard, Susanna Dreisigacker, Leonardo Crespo-Herrera, Carolina Saint Pierre, Morten Lillemo, Jaime Cuevas, Alison Bentley, Rodomiro Ortiz\",\"doi\":\"10.1016/j.tplants.2024.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Statistical machine learning (ML) extracts patterns from extensive genomic, phenotypic, and environmental data. ML algorithms automatically identify relevant features and use cross-validation to ensure robust models and improve prediction reliability in new lines. Furthermore, ML analyses of genotype-by-environment (G×E) interactions can offer insights into the genetic factors that affect performance in specific environments. By leveraging historical breeding data, ML streamlines strategies and automates analyses to reveal genomic patterns. In this review we examine the transformative impact of big data, including multi-trait genomics, phenomics, and environmental covariables, on genomic-enabled prediction in plant breeding. We discuss how big data and ML are revolutionizing the field by enhancing prediction accuracy, deepening our understanding of G×E interactions, and optimizing breeding strategies through the analysis of extensive and diverse datasets.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2024.09.011\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2024.09.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
统计机器学习(ML)可从大量基因组、表型和环境数据中提取模式。ML 算法能自动识别相关特征,并利用交叉验证确保模型的稳健性,提高新品系的预测可靠性。此外,通过 ML 分析基因型与环境(G×E)的交互作用,可以深入了解影响特定环境中表现的遗传因素。通过利用历史育种数据,ML 简化了策略并使分析自动化,从而揭示基因组模式。在本综述中,我们探讨了大数据(包括多性状基因组学、表型组学和环境协变量)对植物育种中基因组预测的变革性影响。我们将讨论大数据和 ML 如何通过提高预测准确性、加深对 G×E 相互作用的理解以及通过分析广泛而多样的数据集优化育种策略来彻底改变这一领域。
Machine learning algorithms translate big data into predictive breeding accuracy.
Statistical machine learning (ML) extracts patterns from extensive genomic, phenotypic, and environmental data. ML algorithms automatically identify relevant features and use cross-validation to ensure robust models and improve prediction reliability in new lines. Furthermore, ML analyses of genotype-by-environment (G×E) interactions can offer insights into the genetic factors that affect performance in specific environments. By leveraging historical breeding data, ML streamlines strategies and automates analyses to reveal genomic patterns. In this review we examine the transformative impact of big data, including multi-trait genomics, phenomics, and environmental covariables, on genomic-enabled prediction in plant breeding. We discuss how big data and ML are revolutionizing the field by enhancing prediction accuracy, deepening our understanding of G×E interactions, and optimizing breeding strategies through the analysis of extensive and diverse datasets.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.