Boyang Li, Yun Shao, Chen Liu, Jie Wang, Yanzhong Zhu, Xiaoqian Li
{"title":"2,2',4,4'-四溴二苯醚(BDE-47)对海洋生物的毒理效应和机制。","authors":"Boyang Li, Yun Shao, Chen Liu, Jie Wang, Yanzhong Zhu, Xiaoqian Li","doi":"10.3390/toxics12100747","DOIUrl":null,"url":null,"abstract":"<p><p>2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is a widely used brominated flame retardant belonging to persistent organic pollutants (POPs). After being released into the marine environment, BDE-47 can cause a range of toxic effects on marine organisms through bioaccumulation, biomagnification, and intergenerational transmission. These effects include lethality, impaired motility, photosynthetic toxicity, immune damage, liver toxicity, developmental impairments, and reproductive toxicity. This article reviews the latest research progress on the toxic effects and molecular mechanisms of BDE-47 mentioned above. The primary mechanisms underlying its toxicity include oxidative stress, DNA damage, cellular apoptosis, impaired metabolism, and activation of the MAPK signaling cascade.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510862/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toxicological Effects and Mechanisms of 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47) on Marine Organisms.\",\"authors\":\"Boyang Li, Yun Shao, Chen Liu, Jie Wang, Yanzhong Zhu, Xiaoqian Li\",\"doi\":\"10.3390/toxics12100747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is a widely used brominated flame retardant belonging to persistent organic pollutants (POPs). After being released into the marine environment, BDE-47 can cause a range of toxic effects on marine organisms through bioaccumulation, biomagnification, and intergenerational transmission. These effects include lethality, impaired motility, photosynthetic toxicity, immune damage, liver toxicity, developmental impairments, and reproductive toxicity. This article reviews the latest research progress on the toxic effects and molecular mechanisms of BDE-47 mentioned above. The primary mechanisms underlying its toxicity include oxidative stress, DNA damage, cellular apoptosis, impaired metabolism, and activation of the MAPK signaling cascade.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510862/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics12100747\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100747","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Toxicological Effects and Mechanisms of 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47) on Marine Organisms.
2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is a widely used brominated flame retardant belonging to persistent organic pollutants (POPs). After being released into the marine environment, BDE-47 can cause a range of toxic effects on marine organisms through bioaccumulation, biomagnification, and intergenerational transmission. These effects include lethality, impaired motility, photosynthetic toxicity, immune damage, liver toxicity, developmental impairments, and reproductive toxicity. This article reviews the latest research progress on the toxic effects and molecular mechanisms of BDE-47 mentioned above. The primary mechanisms underlying its toxicity include oxidative stress, DNA damage, cellular apoptosis, impaired metabolism, and activation of the MAPK signaling cascade.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering:
The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil);
Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products;
Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans;
Approaches to assess the risks of chemicals and materials to humans and the environment;
Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.