脂质组学和转录组学分析揭示次氯酸钠(NaClO)扰乱斑马鱼(Danio rerio)幼体的脂质代谢

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Toxics Pub Date : 2024-09-30 DOI:10.3390/toxics12100718
Wen Wang, Hua Yang, Xingning Xiao, Qu Chen, Wentao Lv, Lingyan Ma, Chanlin Fang, Yuanxiang Jin, Yingping Xiao
{"title":"脂质组学和转录组学分析揭示次氯酸钠(NaClO)扰乱斑马鱼(Danio rerio)幼体的脂质代谢","authors":"Wen Wang, Hua Yang, Xingning Xiao, Qu Chen, Wentao Lv, Lingyan Ma, Chanlin Fang, Yuanxiang Jin, Yingping Xiao","doi":"10.3390/toxics12100718","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium hypochlorite (NaClO) has been widely utilized since the initial outbreak of coronavirus disease (COVID-19). The widespread use of NaClO means that it can directly enter aquatic ecosystems through wastewater discharge. In this study, we analyzed the expression of <i>PPAR-γ</i>, <i>FAS</i>, and <i>ACC1</i>, which significantly increased in larval zebrafish following exposure to 300 μg/L NaClO for 7 days. Additionally, we examined the effects of high concentrations of NaClO on zebrafish through non-targeted lipidomics and transcriptomics. A total of 44 characteristic lipid molecules were identified using non-targeted lipidomics; an absolute quantitative analysis revealed that the contents of these subclasses of lipids decreased significantly following exposure to 300 μg/L NaClO for 7 days. The levels of triglyceride (TG), phosphatidylethanolamines (PE), and diglyceride (DG) were particularly affected. Transcriptomic analysis revealed that exposure to 300 μg/L NaClO could significantly disrupt global gene transcription in larval zebrafish. Interestingly, more than 700 differentially expressed genes (DEGs) were identified, primarily associated with lipid metabolism and glycometabolism pathways. Overall, our study provided new insights into the toxicological effects of chlorine-containing disinfectants in aquatic organisms.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510785/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sodium Hypochlorite (NaClO) Disturbed Lipid Metabolism in Larval Zebrafish (<i>Danio rerio</i>), as Revealed by Lipidomics and Transcriptomics Analyses.\",\"authors\":\"Wen Wang, Hua Yang, Xingning Xiao, Qu Chen, Wentao Lv, Lingyan Ma, Chanlin Fang, Yuanxiang Jin, Yingping Xiao\",\"doi\":\"10.3390/toxics12100718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sodium hypochlorite (NaClO) has been widely utilized since the initial outbreak of coronavirus disease (COVID-19). The widespread use of NaClO means that it can directly enter aquatic ecosystems through wastewater discharge. In this study, we analyzed the expression of <i>PPAR-γ</i>, <i>FAS</i>, and <i>ACC1</i>, which significantly increased in larval zebrafish following exposure to 300 μg/L NaClO for 7 days. Additionally, we examined the effects of high concentrations of NaClO on zebrafish through non-targeted lipidomics and transcriptomics. A total of 44 characteristic lipid molecules were identified using non-targeted lipidomics; an absolute quantitative analysis revealed that the contents of these subclasses of lipids decreased significantly following exposure to 300 μg/L NaClO for 7 days. The levels of triglyceride (TG), phosphatidylethanolamines (PE), and diglyceride (DG) were particularly affected. Transcriptomic analysis revealed that exposure to 300 μg/L NaClO could significantly disrupt global gene transcription in larval zebrafish. Interestingly, more than 700 differentially expressed genes (DEGs) were identified, primarily associated with lipid metabolism and glycometabolism pathways. Overall, our study provided new insights into the toxicological effects of chlorine-containing disinfectants in aquatic organisms.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510785/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics12100718\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100718","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

自冠状病毒病(COVID-19)首次爆发以来,次氯酸钠(NaClO)一直被广泛使用。次氯酸钠的广泛使用意味着它可以通过废水排放直接进入水生生态系统。在本研究中,我们分析了斑马鱼幼体在接触 300 μg/L NaClO 7 天后 PPAR-γ、FAS 和 ACC1 的表达情况。此外,我们还通过非靶向脂质组学和转录组学研究了高浓度 NaClO 对斑马鱼的影响。非靶向脂质组学共鉴定出 44 种特征性脂质分子;绝对定量分析显示,暴露于 300 μg/L NaClO 7 天后,这些亚类脂质的含量显著下降。甘油三酯(TG)、磷脂酰乙醇胺(PE)和二甘油酯(DG)的含量尤其受到影响。转录组分析表明,暴露于 300 μg/L NaClO 会显著干扰斑马鱼幼体的全局基因转录。有趣的是,研究发现了 700 多个差异表达基因(DEGs),这些基因主要与脂质代谢和糖代谢途径有关。总之,我们的研究为了解含氯消毒剂对水生生物的毒理学影响提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sodium Hypochlorite (NaClO) Disturbed Lipid Metabolism in Larval Zebrafish (Danio rerio), as Revealed by Lipidomics and Transcriptomics Analyses.

Sodium hypochlorite (NaClO) has been widely utilized since the initial outbreak of coronavirus disease (COVID-19). The widespread use of NaClO means that it can directly enter aquatic ecosystems through wastewater discharge. In this study, we analyzed the expression of PPAR-γ, FAS, and ACC1, which significantly increased in larval zebrafish following exposure to 300 μg/L NaClO for 7 days. Additionally, we examined the effects of high concentrations of NaClO on zebrafish through non-targeted lipidomics and transcriptomics. A total of 44 characteristic lipid molecules were identified using non-targeted lipidomics; an absolute quantitative analysis revealed that the contents of these subclasses of lipids decreased significantly following exposure to 300 μg/L NaClO for 7 days. The levels of triglyceride (TG), phosphatidylethanolamines (PE), and diglyceride (DG) were particularly affected. Transcriptomic analysis revealed that exposure to 300 μg/L NaClO could significantly disrupt global gene transcription in larval zebrafish. Interestingly, more than 700 differentially expressed genes (DEGs) were identified, primarily associated with lipid metabolism and glycometabolism pathways. Overall, our study provided new insights into the toxicological effects of chlorine-containing disinfectants in aquatic organisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering: The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil); Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products; Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans; Approaches to assess the risks of chemicals and materials to humans and the environment; Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信