Delphine Rousseau-Ralliard, Jeanne Bozec, Marion Ouidir, Nicolas Jovanovic, Véronique Gayrard, Namya Mellouk, Marie-Noëlle Dieudonné, Nicole Picard-Hagen, Maria-José Flores-Sanabria, Hélène Jammes, Claire Philippat, Anne Couturier-Tarrade
{"title":"短半衰期化学品:母体暴露与后代健康后果--合成酚、苯甲酸酯和邻苯二甲酸酯的案例。","authors":"Delphine Rousseau-Ralliard, Jeanne Bozec, Marion Ouidir, Nicolas Jovanovic, Véronique Gayrard, Namya Mellouk, Marie-Noëlle Dieudonné, Nicole Picard-Hagen, Maria-José Flores-Sanabria, Hélène Jammes, Claire Philippat, Anne Couturier-Tarrade","doi":"10.3390/toxics12100710","DOIUrl":null,"url":null,"abstract":"<p><p>Phenols, parabens, and phthalates (PPPs) are suspected or known endocrine disruptors. They are used in consumer products that pregnant women and their progeny are exposed to daily through the placenta, which could affect offspring health. This review aims to compile data from cohort studies and in vitro and in vivo models to provide a summary regarding placental transfer, fetoplacental development, and the predisposition to adult diseases resulting from maternal exposure to PPPs during the gestational period. In humans, using the concentration of pollutants in maternal urine, and taking the offspring sex into account, positive or negative associations have been observed concerning placental or newborn weight, children's BMI, blood pressure, gonadal function, or age at puberty. In animal models, without taking sex into account, alterations of placental structure and gene expression linked to hormones or DNA methylation were related to phenol exposure. At the postnatal stage, pollutants affect the bodyweight, the carbohydrate metabolism, the cardiovascular system, gonadal development, the age of puberty, sex/thyroid hormones, and gamete quality, but these effects depend on the age and sex. Future challenges will be to explore the effects of pollutants in mixtures using models and to identify the early signatures of in utero exposure capable of predicting the health trajectory of the offspring.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511413/pdf/","citationCount":"0","resultStr":"{\"title\":\"Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences-The Case of Synthetic Phenols, Parabens, and Phthalates.\",\"authors\":\"Delphine Rousseau-Ralliard, Jeanne Bozec, Marion Ouidir, Nicolas Jovanovic, Véronique Gayrard, Namya Mellouk, Marie-Noëlle Dieudonné, Nicole Picard-Hagen, Maria-José Flores-Sanabria, Hélène Jammes, Claire Philippat, Anne Couturier-Tarrade\",\"doi\":\"10.3390/toxics12100710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phenols, parabens, and phthalates (PPPs) are suspected or known endocrine disruptors. They are used in consumer products that pregnant women and their progeny are exposed to daily through the placenta, which could affect offspring health. This review aims to compile data from cohort studies and in vitro and in vivo models to provide a summary regarding placental transfer, fetoplacental development, and the predisposition to adult diseases resulting from maternal exposure to PPPs during the gestational period. In humans, using the concentration of pollutants in maternal urine, and taking the offspring sex into account, positive or negative associations have been observed concerning placental or newborn weight, children's BMI, blood pressure, gonadal function, or age at puberty. In animal models, without taking sex into account, alterations of placental structure and gene expression linked to hormones or DNA methylation were related to phenol exposure. At the postnatal stage, pollutants affect the bodyweight, the carbohydrate metabolism, the cardiovascular system, gonadal development, the age of puberty, sex/thyroid hormones, and gamete quality, but these effects depend on the age and sex. Future challenges will be to explore the effects of pollutants in mixtures using models and to identify the early signatures of in utero exposure capable of predicting the health trajectory of the offspring.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511413/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics12100710\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100710","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
苯酚、对羟基苯甲酸酯和邻苯二甲酸酯(PPPs)是可疑或已知的内分泌干扰物。它们被用于消费品中,孕妇及其后代每天都会通过胎盘接触到这些物质,从而影响后代的健康。本综述旨在汇编来自队列研究、体外和体内模型的数据,总结母亲在妊娠期接触持久性有机污染物所导致的胎盘转移、胎盘发育和成年疾病的易感性。在人类中,利用母体尿液中的污染物浓度,并考虑到后代的性别,可以观察到胎盘或新生儿体重、儿童的体重指数、血压、性腺功能或青春期年龄方面的正相关或负相关关系。在动物模型中,在不考虑性别的情况下,胎盘结构的改变以及与激素或 DNA 甲基化相关的基因表达与苯酚接触有关。在出生后阶段,污染物会影响体重、碳水化合物代谢、心血管系统、性腺发育、青春期年龄、性激素/甲状腺激素和配子质量,但这些影响取决于年龄和性别。未来的挑战将是利用模型探索混合物中污染物的影响,并确定子宫内暴露的早期特征,以预测后代的健康轨迹。
Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences-The Case of Synthetic Phenols, Parabens, and Phthalates.
Phenols, parabens, and phthalates (PPPs) are suspected or known endocrine disruptors. They are used in consumer products that pregnant women and their progeny are exposed to daily through the placenta, which could affect offspring health. This review aims to compile data from cohort studies and in vitro and in vivo models to provide a summary regarding placental transfer, fetoplacental development, and the predisposition to adult diseases resulting from maternal exposure to PPPs during the gestational period. In humans, using the concentration of pollutants in maternal urine, and taking the offspring sex into account, positive or negative associations have been observed concerning placental or newborn weight, children's BMI, blood pressure, gonadal function, or age at puberty. In animal models, without taking sex into account, alterations of placental structure and gene expression linked to hormones or DNA methylation were related to phenol exposure. At the postnatal stage, pollutants affect the bodyweight, the carbohydrate metabolism, the cardiovascular system, gonadal development, the age of puberty, sex/thyroid hormones, and gamete quality, but these effects depend on the age and sex. Future challenges will be to explore the effects of pollutants in mixtures using models and to identify the early signatures of in utero exposure capable of predicting the health trajectory of the offspring.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering:
The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil);
Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products;
Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans;
Approaches to assess the risks of chemicals and materials to humans and the environment;
Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.