Han Zhang, Jinping Duan, Pengcheng Luo, Luxiang Zhu, Yanan Liu
{"title":"电介质屏障放电结合高碘酸盐氧化法降解水中的阿特拉津:增强性能、降解途径和毒性评估。","authors":"Han Zhang, Jinping Duan, Pengcheng Luo, Luxiang Zhu, Yanan Liu","doi":"10.3390/toxics12100746","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread occurrence of atrazine (ATZ) in water environments presents a considerable risk to human health and ecosystems. Herein, the performance of dielectric barrier discharge integrated with periodate (DBD/PI) for ATZ decomposition was evaluated. Results demonstrated that the DBD/PI system improved ATZ decomposition efficiency by 18.2-22.5% compared to the sole DBD system. After 10 min treatment, the decomposition efficiency attained 82.4% at a discharge power of 68 W, a PI dosage of 0.02 mM, and an initial ATZ concentration of 10 mg/L. As the PI dosage increased, the decomposition efficiency exhibited a trend of initially increasing, followed by a decrease. Acidic conditions were more favorable for ATZ removal compared to alkaline and neutral conditions. Electron paramagnetic resonance (EPR) was adopted for characterizing the active species produced in the DBD/PI system, and quenching experiments revealed their influence on ATZ decomposition following a sequence of <sup>1</sup>O<sub>2</sub> > O<sub>2</sub><sup>-</sup>• > IO<sub>3</sub>• > OH•. The decomposition pathways were proposed based on the theoretical calculations and intermediate identification. Additionally, the toxic effects of ATZ and its intermediates were assessed. This study demonstrates that the DBD/PI treatment represents an effective strategy for the decomposition of ATZ in aquatic environments.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511528/pdf/","citationCount":"0","resultStr":"{\"title\":\"Degradation of Atrazine in Water by Dielectric Barrier Discharge Combined with Periodate Oxidation: Enhanced Performance, Degradation Pathways, and Toxicity Assessment.\",\"authors\":\"Han Zhang, Jinping Duan, Pengcheng Luo, Luxiang Zhu, Yanan Liu\",\"doi\":\"10.3390/toxics12100746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread occurrence of atrazine (ATZ) in water environments presents a considerable risk to human health and ecosystems. Herein, the performance of dielectric barrier discharge integrated with periodate (DBD/PI) for ATZ decomposition was evaluated. Results demonstrated that the DBD/PI system improved ATZ decomposition efficiency by 18.2-22.5% compared to the sole DBD system. After 10 min treatment, the decomposition efficiency attained 82.4% at a discharge power of 68 W, a PI dosage of 0.02 mM, and an initial ATZ concentration of 10 mg/L. As the PI dosage increased, the decomposition efficiency exhibited a trend of initially increasing, followed by a decrease. Acidic conditions were more favorable for ATZ removal compared to alkaline and neutral conditions. Electron paramagnetic resonance (EPR) was adopted for characterizing the active species produced in the DBD/PI system, and quenching experiments revealed their influence on ATZ decomposition following a sequence of <sup>1</sup>O<sub>2</sub> > O<sub>2</sub><sup>-</sup>• > IO<sub>3</sub>• > OH•. The decomposition pathways were proposed based on the theoretical calculations and intermediate identification. Additionally, the toxic effects of ATZ and its intermediates were assessed. This study demonstrates that the DBD/PI treatment represents an effective strategy for the decomposition of ATZ in aquatic environments.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511528/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics12100746\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100746","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Degradation of Atrazine in Water by Dielectric Barrier Discharge Combined with Periodate Oxidation: Enhanced Performance, Degradation Pathways, and Toxicity Assessment.
The widespread occurrence of atrazine (ATZ) in water environments presents a considerable risk to human health and ecosystems. Herein, the performance of dielectric barrier discharge integrated with periodate (DBD/PI) for ATZ decomposition was evaluated. Results demonstrated that the DBD/PI system improved ATZ decomposition efficiency by 18.2-22.5% compared to the sole DBD system. After 10 min treatment, the decomposition efficiency attained 82.4% at a discharge power of 68 W, a PI dosage of 0.02 mM, and an initial ATZ concentration of 10 mg/L. As the PI dosage increased, the decomposition efficiency exhibited a trend of initially increasing, followed by a decrease. Acidic conditions were more favorable for ATZ removal compared to alkaline and neutral conditions. Electron paramagnetic resonance (EPR) was adopted for characterizing the active species produced in the DBD/PI system, and quenching experiments revealed their influence on ATZ decomposition following a sequence of 1O2 > O2-• > IO3• > OH•. The decomposition pathways were proposed based on the theoretical calculations and intermediate identification. Additionally, the toxic effects of ATZ and its intermediates were assessed. This study demonstrates that the DBD/PI treatment represents an effective strategy for the decomposition of ATZ in aquatic environments.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.