{"title":"Rxp 中的单核苷酸插入可赋予大豆对细菌性脓疱病的持久抗性。","authors":"Fumio Taguchi-Shiobara, Koji Takahashi, Ryoichi Yano, Rintaro Suzuki, Yuko Yokota, Toshimasa Yamazaki, Tetsuya Yamada, Takashi Sayama, Naohiro Yamada, Nobuhiko Oki, Toyoaki Anai, Akito Kaga, Masao Ishimoto","doi":"10.1007/s00122-024-04743-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>The soybean Rxp gene, encoding a bHLH transcription factor and an ACT-like domain, has an rxp allele producing a truncated protein that confers resistance to pustule-causing Xanthomonas axonopodis pv. glycines. In soybean, bacterial pustules caused by Xanthomonas axonopodis pv. glycines lead to premature defoliation and decreased yield in warm, wet climates. In the USA, approximately 70 years ago, bacterial pustules were eliminated by introducing a recessive resistance allele, rxp, of the Rxp gene, representing the first example of successful soybean breeding for durable disease resistance in North America. In this study, we isolated this historical Rxp gene from resistant soybean varieties using positional cloning. The 1.06 Mb region where Rxp was reported to reside was narrowed down to an 11.1 kb region containing a single gene, Glyma.17g090500. The resistance allele, rxp, contains a T insertion. A complementation test of the Rxp allele in resistant plants confirmed the identification of the Rxp gene. The product of the susceptible wild-type allele, Rxp, is presumed to be a basic helix-loop-helix (bHLH) transcription factor with an aspartate kinase, chorismate mutase, and TyrA (ACT)-like domain. This gene was mainly expressed in extended leaves, and its homologs were identified to be distributed in angiosperms. A total of six alleles were obtained: four from spontaneous variation, including the wild-type and three mutant alleles that encoded truncated proteins, and two from ethyl methanesulfonate mutants, including an allele that encoded a truncated protein and a missense allele. By evaluating the resistance of these six alleles, we found that the loss of function of RXP decreased the bacterial pustule lesions. This study provides important insights into the soybean rxp allele, which confers durable resistance to bacterial pustules.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A single-nucleotide insertion in Rxp confers durable resistance to bacterial pustule in soybean.\",\"authors\":\"Fumio Taguchi-Shiobara, Koji Takahashi, Ryoichi Yano, Rintaro Suzuki, Yuko Yokota, Toshimasa Yamazaki, Tetsuya Yamada, Takashi Sayama, Naohiro Yamada, Nobuhiko Oki, Toyoaki Anai, Akito Kaga, Masao Ishimoto\",\"doi\":\"10.1007/s00122-024-04743-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>The soybean Rxp gene, encoding a bHLH transcription factor and an ACT-like domain, has an rxp allele producing a truncated protein that confers resistance to pustule-causing Xanthomonas axonopodis pv. glycines. In soybean, bacterial pustules caused by Xanthomonas axonopodis pv. glycines lead to premature defoliation and decreased yield in warm, wet climates. In the USA, approximately 70 years ago, bacterial pustules were eliminated by introducing a recessive resistance allele, rxp, of the Rxp gene, representing the first example of successful soybean breeding for durable disease resistance in North America. In this study, we isolated this historical Rxp gene from resistant soybean varieties using positional cloning. The 1.06 Mb region where Rxp was reported to reside was narrowed down to an 11.1 kb region containing a single gene, Glyma.17g090500. The resistance allele, rxp, contains a T insertion. A complementation test of the Rxp allele in resistant plants confirmed the identification of the Rxp gene. The product of the susceptible wild-type allele, Rxp, is presumed to be a basic helix-loop-helix (bHLH) transcription factor with an aspartate kinase, chorismate mutase, and TyrA (ACT)-like domain. This gene was mainly expressed in extended leaves, and its homologs were identified to be distributed in angiosperms. A total of six alleles were obtained: four from spontaneous variation, including the wild-type and three mutant alleles that encoded truncated proteins, and two from ethyl methanesulfonate mutants, including an allele that encoded a truncated protein and a missense allele. By evaluating the resistance of these six alleles, we found that the loss of function of RXP decreased the bacterial pustule lesions. This study provides important insights into the soybean rxp allele, which confers durable resistance to bacterial pustules.</p>\",\"PeriodicalId\":22955,\"journal\":{\"name\":\"Theoretical and Applied Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-024-04743-5\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04743-5","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
A single-nucleotide insertion in Rxp confers durable resistance to bacterial pustule in soybean.
Key message: The soybean Rxp gene, encoding a bHLH transcription factor and an ACT-like domain, has an rxp allele producing a truncated protein that confers resistance to pustule-causing Xanthomonas axonopodis pv. glycines. In soybean, bacterial pustules caused by Xanthomonas axonopodis pv. glycines lead to premature defoliation and decreased yield in warm, wet climates. In the USA, approximately 70 years ago, bacterial pustules were eliminated by introducing a recessive resistance allele, rxp, of the Rxp gene, representing the first example of successful soybean breeding for durable disease resistance in North America. In this study, we isolated this historical Rxp gene from resistant soybean varieties using positional cloning. The 1.06 Mb region where Rxp was reported to reside was narrowed down to an 11.1 kb region containing a single gene, Glyma.17g090500. The resistance allele, rxp, contains a T insertion. A complementation test of the Rxp allele in resistant plants confirmed the identification of the Rxp gene. The product of the susceptible wild-type allele, Rxp, is presumed to be a basic helix-loop-helix (bHLH) transcription factor with an aspartate kinase, chorismate mutase, and TyrA (ACT)-like domain. This gene was mainly expressed in extended leaves, and its homologs were identified to be distributed in angiosperms. A total of six alleles were obtained: four from spontaneous variation, including the wild-type and three mutant alleles that encoded truncated proteins, and two from ethyl methanesulfonate mutants, including an allele that encoded a truncated protein and a missense allele. By evaluating the resistance of these six alleles, we found that the loss of function of RXP decreased the bacterial pustule lesions. This study provides important insights into the soybean rxp allele, which confers durable resistance to bacterial pustules.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.