{"title":"从游离硫辛酸贮存障碍(FSASD)患者身上获得的两个 iPSC 株系的生成和特征描述。","authors":"","doi":"10.1016/j.scr.2024.103600","DOIUrl":null,"url":null,"abstract":"<div><div>Free sialic acid storage disorder (FSASD) is a rare, autosomal recessive, neurodegenerative disorder caused by biallelic mutations in <em>SLC17A5</em>, encoding the lysosomal transmembrane sialic acid exporter, SLC17A5. Defects in SLC17A5 lead to lysosomal accumulation of free sialic acid and other acid hexoses. The clinical spectrum of FSASD ranges from mild (Salla disease) to severe infantile forms. The pathobiology underlying FSASD remains elusive. In this study, two induced pluripotent stem cell (iPSC) lines were generated from a mild and an intermediate FSASD patient and characterized to provide much-needed additional models for basic and translational studies.</div></div>","PeriodicalId":21843,"journal":{"name":"Stem cell research","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation and characterization of two iPSC lines derived from subjects with Free Sialic Acid Storage Disorder (FSASD)\",\"authors\":\"\",\"doi\":\"10.1016/j.scr.2024.103600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Free sialic acid storage disorder (FSASD) is a rare, autosomal recessive, neurodegenerative disorder caused by biallelic mutations in <em>SLC17A5</em>, encoding the lysosomal transmembrane sialic acid exporter, SLC17A5. Defects in SLC17A5 lead to lysosomal accumulation of free sialic acid and other acid hexoses. The clinical spectrum of FSASD ranges from mild (Salla disease) to severe infantile forms. The pathobiology underlying FSASD remains elusive. In this study, two induced pluripotent stem cell (iPSC) lines were generated from a mild and an intermediate FSASD patient and characterized to provide much-needed additional models for basic and translational studies.</div></div>\",\"PeriodicalId\":21843,\"journal\":{\"name\":\"Stem cell research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1873506124002988\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873506124002988","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Generation and characterization of two iPSC lines derived from subjects with Free Sialic Acid Storage Disorder (FSASD)
Free sialic acid storage disorder (FSASD) is a rare, autosomal recessive, neurodegenerative disorder caused by biallelic mutations in SLC17A5, encoding the lysosomal transmembrane sialic acid exporter, SLC17A5. Defects in SLC17A5 lead to lysosomal accumulation of free sialic acid and other acid hexoses. The clinical spectrum of FSASD ranges from mild (Salla disease) to severe infantile forms. The pathobiology underlying FSASD remains elusive. In this study, two induced pluripotent stem cell (iPSC) lines were generated from a mild and an intermediate FSASD patient and characterized to provide much-needed additional models for basic and translational studies.
期刊介绍:
Stem Cell Research is dedicated to publishing high-quality manuscripts focusing on the biology and applications of stem cell research. Submissions to Stem Cell Research, may cover all aspects of stem cells, including embryonic stem cells, tissue-specific stem cells, cancer stem cells, developmental studies, stem cell genomes, and translational research. Stem Cell Research publishes 6 issues a year.