牛顿-拉夫逊方法中的统一化和有界泰勒级数提高了多态过渡模型估计和推理的计算性能。

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Statistical Methods in Medical Research Pub Date : 2024-11-01 Epub Date: 2024-10-23 DOI:10.1177/09622802241283882
Yuxi Zhu, Guy Brock, Lang Li
{"title":"牛顿-拉夫逊方法中的统一化和有界泰勒级数提高了多态过渡模型估计和推理的计算性能。","authors":"Yuxi Zhu, Guy Brock, Lang Li","doi":"10.1177/09622802241283882","DOIUrl":null,"url":null,"abstract":"<p><p>Multistate transition models (MSTMs) are valuable tools depicting disease progression. However, due to the complexity of MSTMs, larger sample size and longer follow-up time in real-world data, the computation of statistical estimation and inference for MSTMs becomes challenging. A bounded Taylor series in Newton-Raphson procedure is proposed which leverages the uniformization technique to derive maximum likelihood estimates and corresponding covariance matrix. The proposed method, namely uniformization Taylor-bounded Newton-Raphson, is validated in three simulation studies, which demonstrate the accuracy in parameter estimation, the efficiency in computation time and robustness in terms of different situations. This method is also illustrated using a large electronic medical record data related to statin-induced side effects and discontinuation.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1901-1919"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniformization and bounded Taylor series in Newton-Raphson method improves computational performance for a multistate transition model estimation and inference.\",\"authors\":\"Yuxi Zhu, Guy Brock, Lang Li\",\"doi\":\"10.1177/09622802241283882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multistate transition models (MSTMs) are valuable tools depicting disease progression. However, due to the complexity of MSTMs, larger sample size and longer follow-up time in real-world data, the computation of statistical estimation and inference for MSTMs becomes challenging. A bounded Taylor series in Newton-Raphson procedure is proposed which leverages the uniformization technique to derive maximum likelihood estimates and corresponding covariance matrix. The proposed method, namely uniformization Taylor-bounded Newton-Raphson, is validated in three simulation studies, which demonstrate the accuracy in parameter estimation, the efficiency in computation time and robustness in terms of different situations. This method is also illustrated using a large electronic medical record data related to statin-induced side effects and discontinuation.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"1901-1919\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241283882\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241283882","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

多态转变模型(MSTM)是描述疾病进展的重要工具。然而,由于多态转换模型的复杂性、样本量较大以及真实世界数据的随访时间较长,多态转换模型的统计估计和推断计算变得极具挑战性。本文提出了牛顿-拉夫逊程序中的有界泰勒级数,利用均匀化技术得出最大似然估计值和相应的协方差矩阵。所提出的方法,即均匀化泰勒有界牛顿-拉夫逊法,在三项模拟研究中得到了验证,证明了参数估计的准确性、计算时间的高效性以及在不同情况下的鲁棒性。该方法还利用与他汀类药物引起的副作用和停药相关的大量电子病历数据进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniformization and bounded Taylor series in Newton-Raphson method improves computational performance for a multistate transition model estimation and inference.

Multistate transition models (MSTMs) are valuable tools depicting disease progression. However, due to the complexity of MSTMs, larger sample size and longer follow-up time in real-world data, the computation of statistical estimation and inference for MSTMs becomes challenging. A bounded Taylor series in Newton-Raphson procedure is proposed which leverages the uniformization technique to derive maximum likelihood estimates and corresponding covariance matrix. The proposed method, namely uniformization Taylor-bounded Newton-Raphson, is validated in three simulation studies, which demonstrate the accuracy in parameter estimation, the efficiency in computation time and robustness in terms of different situations. This method is also illustrated using a large electronic medical record data related to statin-induced side effects and discontinuation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信