{"title":"人类相关剂量的内分泌干扰化学物质和药物混合物对睾丸发育和功能的影响。","authors":"Nicole Mohajer, Martine Culty","doi":"10.1530/REP-24-0155","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to endocrine-disrupting chemicals (EDCs) and pharmaceuticals during development has been linked to reproductive dysfunction, reduced semen quality, and infertility. Research indicates that EDC mixtures, which are common in the modern environment, can pose significant risks that may not be fully assessed by studying individual compound toxicity, especially at environmentally relevant doses or concentrations. Understanding the contribution of chemical mixtures to male reproductive toxicity is crucial, given the increasing reliance on pharmaceuticals and pervasiveness of anthropogenic pollution. Recent studies on EDC effects have expanded to a more diverse range of microplastics, pesticides, antimicrobials, phytoestrogens, and pharmaceuticals such as analgesics, which can collectively impact testicular function and fertility. Adverse outcomes observed across studies include reproductive tract malformations, decreased sperm count and motility, lowered testosterone, delayed-onset puberty, and possible causal effects such as oxidative stress and altered gene expression. Still, limited data exists on combinations of environmental pollutants and pharmaceuticals with ED potential at human-relevant doses. This review of the recent literature aims to synthesize the toxicological impact of low dose chemical mixtures on male reproductive health. Overall, humans are exposed to EDCs and drugs through various ways, necessitating an understanding of their concomitant effects on male reproductive health.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPACT OF HUMAN-RELEVANT DOSES OF ENDOCRINE DISRUPTING CHEMICAL AND DRUG MIXTURES ON TESTIS DEVELOPMENT AND FUNCTION.\",\"authors\":\"Nicole Mohajer, Martine Culty\",\"doi\":\"10.1530/REP-24-0155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exposure to endocrine-disrupting chemicals (EDCs) and pharmaceuticals during development has been linked to reproductive dysfunction, reduced semen quality, and infertility. Research indicates that EDC mixtures, which are common in the modern environment, can pose significant risks that may not be fully assessed by studying individual compound toxicity, especially at environmentally relevant doses or concentrations. Understanding the contribution of chemical mixtures to male reproductive toxicity is crucial, given the increasing reliance on pharmaceuticals and pervasiveness of anthropogenic pollution. Recent studies on EDC effects have expanded to a more diverse range of microplastics, pesticides, antimicrobials, phytoestrogens, and pharmaceuticals such as analgesics, which can collectively impact testicular function and fertility. Adverse outcomes observed across studies include reproductive tract malformations, decreased sperm count and motility, lowered testosterone, delayed-onset puberty, and possible causal effects such as oxidative stress and altered gene expression. Still, limited data exists on combinations of environmental pollutants and pharmaceuticals with ED potential at human-relevant doses. This review of the recent literature aims to synthesize the toxicological impact of low dose chemical mixtures on male reproductive health. Overall, humans are exposed to EDCs and drugs through various ways, necessitating an understanding of their concomitant effects on male reproductive health.</p>\",\"PeriodicalId\":21127,\"journal\":{\"name\":\"Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1530/REP-24-0155\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0155","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在发育过程中接触干扰内分泌的化学品(EDCs)和药物与生殖功能障碍、精液质量下降和不育症有关。研究表明,现代环境中常见的 EDC 混合物可能会带来重大风险,而研究单个化合物的毒性,尤其是在环境相关剂量或浓度下的毒性,可能无法全面评估这些风险。鉴于人们对药物的依赖性越来越强,人为污染越来越普遍,了解化学混合物对男性生殖毒性的影响至关重要。最近有关 EDC 影响的研究已扩展到更多种类的微塑料、杀虫剂、抗菌剂、植物雌激素和药物(如镇痛剂),这些物质可共同影响睾丸功能和生育能力。各项研究观察到的不良后果包括生殖道畸形、精子数量和活力下降、睾酮降低、青春期延迟,以及氧化应激和基因表达改变等可能的因果效应。尽管如此,关于环境污染物和药物的组合在人体相关剂量下可能产生 ED 的数据仍然有限。这篇最新文献综述旨在总结低剂量化学混合物对男性生殖健康的毒理学影响。总之,人类通过各种途径接触到 EDCs 和药物,因此有必要了解它们对男性生殖健康的影响。
IMPACT OF HUMAN-RELEVANT DOSES OF ENDOCRINE DISRUPTING CHEMICAL AND DRUG MIXTURES ON TESTIS DEVELOPMENT AND FUNCTION.
Exposure to endocrine-disrupting chemicals (EDCs) and pharmaceuticals during development has been linked to reproductive dysfunction, reduced semen quality, and infertility. Research indicates that EDC mixtures, which are common in the modern environment, can pose significant risks that may not be fully assessed by studying individual compound toxicity, especially at environmentally relevant doses or concentrations. Understanding the contribution of chemical mixtures to male reproductive toxicity is crucial, given the increasing reliance on pharmaceuticals and pervasiveness of anthropogenic pollution. Recent studies on EDC effects have expanded to a more diverse range of microplastics, pesticides, antimicrobials, phytoestrogens, and pharmaceuticals such as analgesics, which can collectively impact testicular function and fertility. Adverse outcomes observed across studies include reproductive tract malformations, decreased sperm count and motility, lowered testosterone, delayed-onset puberty, and possible causal effects such as oxidative stress and altered gene expression. Still, limited data exists on combinations of environmental pollutants and pharmaceuticals with ED potential at human-relevant doses. This review of the recent literature aims to synthesize the toxicological impact of low dose chemical mixtures on male reproductive health. Overall, humans are exposed to EDCs and drugs through various ways, necessitating an understanding of their concomitant effects on male reproductive health.
期刊介绍:
Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction.
Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease.
Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.