试图寻找所有类人猿排卵的共同细胞机制:综述。

IF 3.7 3区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Reproduction Pub Date : 2024-10-01 DOI:10.1530/REP-24-0184
Takayuki Takahashi, Katsueki Ogiwara
{"title":"试图寻找所有类人猿排卵的共同细胞机制:综述。","authors":"Takayuki Takahashi, Katsueki Ogiwara","doi":"10.1530/REP-24-0184","DOIUrl":null,"url":null,"abstract":"<p><p>Ovulation is the process by which a fertilizable oocyte is extruded from the interior of the follicle. Herein, we conducted a literature survey to explore the ovulation patterns of eleven sexually reproducing species belonging to 10 animal phyla. These results indicate a large variety of ovulation patterns. Further comparative biological and evolutionary considerations of these results led us to conclude that most female animals ovulate via follicle rupture. We propose that in all animals that ovulate by follicle rupture, two cellular events may be critically involved in the process: 1) the disintegration of cell junctional systems that lead to intracellular cytoskeleton rearrangement in the follicle cells and 2) the degradation of extracellular matrix (ECM) proteins filling between follicle cells. These events may result in follicular cell deformation and increased motility, both of which are necessary for the formation of a path through which oocytes escape from the follicle. In addition to the requirement of ECM degradation for disintegrating cell junctions, intensive ECM protein degradation at the apical region of the follicle probably became increasingly important in late-evolving animals, such as vertebrates, in which a thick follicle wall containing a large abundance of ECM proteins is formed. We also considered hypothetical scenarios for the evolution of ovulation in these animals. Furthermore, this article discusses the future problems that need to be solved for a more comprehensive understanding of ovulation in the animal kingdom.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An attempt to search for the common cellular mechanism of ovulation across all metazoans: A review.\",\"authors\":\"Takayuki Takahashi, Katsueki Ogiwara\",\"doi\":\"10.1530/REP-24-0184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ovulation is the process by which a fertilizable oocyte is extruded from the interior of the follicle. Herein, we conducted a literature survey to explore the ovulation patterns of eleven sexually reproducing species belonging to 10 animal phyla. These results indicate a large variety of ovulation patterns. Further comparative biological and evolutionary considerations of these results led us to conclude that most female animals ovulate via follicle rupture. We propose that in all animals that ovulate by follicle rupture, two cellular events may be critically involved in the process: 1) the disintegration of cell junctional systems that lead to intracellular cytoskeleton rearrangement in the follicle cells and 2) the degradation of extracellular matrix (ECM) proteins filling between follicle cells. These events may result in follicular cell deformation and increased motility, both of which are necessary for the formation of a path through which oocytes escape from the follicle. In addition to the requirement of ECM degradation for disintegrating cell junctions, intensive ECM protein degradation at the apical region of the follicle probably became increasingly important in late-evolving animals, such as vertebrates, in which a thick follicle wall containing a large abundance of ECM proteins is formed. We also considered hypothetical scenarios for the evolution of ovulation in these animals. Furthermore, this article discusses the future problems that need to be solved for a more comprehensive understanding of ovulation in the animal kingdom.</p>\",\"PeriodicalId\":21127,\"journal\":{\"name\":\"Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1530/REP-24-0184\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0184","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

排卵是受精卵细胞从卵泡内部挤出的过程。在此,我们进行了一项文献调查,探讨了属于 10 个动物门类的 11 个有性生殖物种的排卵模式。这些结果表明排卵模式多种多样。通过对这些结果进行进一步的生物学和进化比较研究,我们得出结论:大多数雌性动物通过卵泡破裂排卵。我们提出,在所有通过卵泡破裂排卵的动物中,有两个细胞事件可能在这一过程中起到了关键作用:1)细胞连接系统解体,导致卵泡细胞内细胞骨架重新排列;2)卵泡细胞间填充的细胞外基质(ECM)蛋白降解。这些事件可能会导致卵泡细胞变形和运动性增强,而这两者都是卵母细胞逃离卵泡的必经之路。除了解体细胞连接需要 ECM 降解外,卵泡顶端区域密集的 ECM 蛋白降解可能在晚期进化动物(如脊椎动物)中变得越来越重要,因为在晚期进化动物中形成了含有大量 ECM 蛋白的厚卵泡壁。我们还考虑了这些动物排卵进化的假设情景。此外,本文还讨论了未来需要解决的问题,以便更全面地了解动物界的排卵情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An attempt to search for the common cellular mechanism of ovulation across all metazoans: A review.

Ovulation is the process by which a fertilizable oocyte is extruded from the interior of the follicle. Herein, we conducted a literature survey to explore the ovulation patterns of eleven sexually reproducing species belonging to 10 animal phyla. These results indicate a large variety of ovulation patterns. Further comparative biological and evolutionary considerations of these results led us to conclude that most female animals ovulate via follicle rupture. We propose that in all animals that ovulate by follicle rupture, two cellular events may be critically involved in the process: 1) the disintegration of cell junctional systems that lead to intracellular cytoskeleton rearrangement in the follicle cells and 2) the degradation of extracellular matrix (ECM) proteins filling between follicle cells. These events may result in follicular cell deformation and increased motility, both of which are necessary for the formation of a path through which oocytes escape from the follicle. In addition to the requirement of ECM degradation for disintegrating cell junctions, intensive ECM protein degradation at the apical region of the follicle probably became increasingly important in late-evolving animals, such as vertebrates, in which a thick follicle wall containing a large abundance of ECM proteins is formed. We also considered hypothetical scenarios for the evolution of ovulation in these animals. Furthermore, this article discusses the future problems that need to be solved for a more comprehensive understanding of ovulation in the animal kingdom.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reproduction
Reproduction 生物-发育生物学
CiteScore
7.40
自引率
2.60%
发文量
199
审稿时长
4-8 weeks
期刊介绍: Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction. Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease. Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信