{"title":"早期视觉调制和选择可预测视觉搜索过程中的眼动时间:ERP研究","authors":"Ryan V Ringer, Carly J Leonard","doi":"10.1111/psyp.14715","DOIUrl":null,"url":null,"abstract":"<p><p>Saccadic eye movements, a critical aspect of real-world visual behavior, are preceded by an initial accumulation of visual information followed by the selection of a single location to move one's eyes. However, it is currently unclear how each of these stages uniquely affects saccadic timing. In this study, participants searched for a contour integration target while EEG was used to measure posterior cortical activity between search display onset and first saccade initiation. The goal was to determine whether saccade timing could be attributed to differences in early ERP amplitudes, with the P1 reflecting the magnitude of early perceptual information accumulation and the N1 reflecting the strength of selection leading to the saccadic decision. EOG was used to measure saccade timing, and trials were divided into fast, middle, and slow bins. The N1 response was smallest in the slow saccade tertile, relative to both the fast and middle tertiles, suggesting weak selection. In contrast, the P1 response was largest for this same slow saccadic tertile relative to the middle saccadic tertile, suggesting vigorous information accumulation. Therefore, delays in saccadic behavior may occur when the visual system is overwhelmed with visual input, thus increasing the time to reach a saccadic decision. These findings reconcile models of eye movement behavior which often prioritize either the impact of information accrual or selection, rather than regarding both as an integrated whole.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":" ","pages":"e14715"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early visual modulation and selection predict saccadic timing during visual search: An ERP study.\",\"authors\":\"Ryan V Ringer, Carly J Leonard\",\"doi\":\"10.1111/psyp.14715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Saccadic eye movements, a critical aspect of real-world visual behavior, are preceded by an initial accumulation of visual information followed by the selection of a single location to move one's eyes. However, it is currently unclear how each of these stages uniquely affects saccadic timing. In this study, participants searched for a contour integration target while EEG was used to measure posterior cortical activity between search display onset and first saccade initiation. The goal was to determine whether saccade timing could be attributed to differences in early ERP amplitudes, with the P1 reflecting the magnitude of early perceptual information accumulation and the N1 reflecting the strength of selection leading to the saccadic decision. EOG was used to measure saccade timing, and trials were divided into fast, middle, and slow bins. The N1 response was smallest in the slow saccade tertile, relative to both the fast and middle tertiles, suggesting weak selection. In contrast, the P1 response was largest for this same slow saccadic tertile relative to the middle saccadic tertile, suggesting vigorous information accumulation. Therefore, delays in saccadic behavior may occur when the visual system is overwhelmed with visual input, thus increasing the time to reach a saccadic decision. These findings reconcile models of eye movement behavior which often prioritize either the impact of information accrual or selection, rather than regarding both as an integrated whole.</p>\",\"PeriodicalId\":20913,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":\" \",\"pages\":\"e14715\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14715\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14715","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Early visual modulation and selection predict saccadic timing during visual search: An ERP study.
Saccadic eye movements, a critical aspect of real-world visual behavior, are preceded by an initial accumulation of visual information followed by the selection of a single location to move one's eyes. However, it is currently unclear how each of these stages uniquely affects saccadic timing. In this study, participants searched for a contour integration target while EEG was used to measure posterior cortical activity between search display onset and first saccade initiation. The goal was to determine whether saccade timing could be attributed to differences in early ERP amplitudes, with the P1 reflecting the magnitude of early perceptual information accumulation and the N1 reflecting the strength of selection leading to the saccadic decision. EOG was used to measure saccade timing, and trials were divided into fast, middle, and slow bins. The N1 response was smallest in the slow saccade tertile, relative to both the fast and middle tertiles, suggesting weak selection. In contrast, the P1 response was largest for this same slow saccadic tertile relative to the middle saccadic tertile, suggesting vigorous information accumulation. Therefore, delays in saccadic behavior may occur when the visual system is overwhelmed with visual input, thus increasing the time to reach a saccadic decision. These findings reconcile models of eye movement behavior which often prioritize either the impact of information accrual or selection, rather than regarding both as an integrated whole.
期刊介绍:
Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.