Sharanabasava V Ganachari, Fatheali A Shilar, Veerabhadragouda B Patil, T M Yunus Khan, C Ahamed Saleel, Mohammed Azam Ali
{"title":"利用聚苯胺-镁纳米复合材料优化氨检测。","authors":"Sharanabasava V Ganachari, Fatheali A Shilar, Veerabhadragouda B Patil, T M Yunus Khan, C Ahamed Saleel, Mohammed Azam Ali","doi":"10.3390/polym16202892","DOIUrl":null,"url":null,"abstract":"<p><p>Polyaniline-magnesia (PANI/MgO) composites with a fibrous nanostructure were synthesized via in situ oxidative polymerization, enabling uniform MgO integration into the polyaniline matrix. These composites were characterized using FTIR spectroscopy to analyze intermolecular bonding, XRD to assess crystallographic structure and phase purity, and SEM to examine surface morphology and topological features. The resulting PANI/MgO nanofibers were utilized to develop ammonia (NH<sub>3</sub>) gas-sensing probes with evaluations conducted at room temperature. The study addresses the critical challenge of achieving high sensitivity and selectivity in ammonia detection at low concentrations, which is a problem that persists in many existing sensor technologies. The nanofibers demonstrated high selectivity and optimal sensitivity for ammonia detection, which was attributed to the synergistic effects between the polyaniline and MgO that enhance gas adsorption. Furthermore, the study revealed that the MgO content critically influences both the morphology and the sensing performance, with higher MgO concentrations improving sensor response. This work underscores the potential of PANI/MgO composites as efficient and selective ammonia sensors, highlighting the importance of MgO content in optimizing material properties for gas-sensing applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511220/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing Ammonia Detection with a Polyaniline-Magnesia Nano Composite.\",\"authors\":\"Sharanabasava V Ganachari, Fatheali A Shilar, Veerabhadragouda B Patil, T M Yunus Khan, C Ahamed Saleel, Mohammed Azam Ali\",\"doi\":\"10.3390/polym16202892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyaniline-magnesia (PANI/MgO) composites with a fibrous nanostructure were synthesized via in situ oxidative polymerization, enabling uniform MgO integration into the polyaniline matrix. These composites were characterized using FTIR spectroscopy to analyze intermolecular bonding, XRD to assess crystallographic structure and phase purity, and SEM to examine surface morphology and topological features. The resulting PANI/MgO nanofibers were utilized to develop ammonia (NH<sub>3</sub>) gas-sensing probes with evaluations conducted at room temperature. The study addresses the critical challenge of achieving high sensitivity and selectivity in ammonia detection at low concentrations, which is a problem that persists in many existing sensor technologies. The nanofibers demonstrated high selectivity and optimal sensitivity for ammonia detection, which was attributed to the synergistic effects between the polyaniline and MgO that enhance gas adsorption. Furthermore, the study revealed that the MgO content critically influences both the morphology and the sensing performance, with higher MgO concentrations improving sensor response. This work underscores the potential of PANI/MgO composites as efficient and selective ammonia sensors, highlighting the importance of MgO content in optimizing material properties for gas-sensing applications.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511220/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16202892\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202892","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Optimizing Ammonia Detection with a Polyaniline-Magnesia Nano Composite.
Polyaniline-magnesia (PANI/MgO) composites with a fibrous nanostructure were synthesized via in situ oxidative polymerization, enabling uniform MgO integration into the polyaniline matrix. These composites were characterized using FTIR spectroscopy to analyze intermolecular bonding, XRD to assess crystallographic structure and phase purity, and SEM to examine surface morphology and topological features. The resulting PANI/MgO nanofibers were utilized to develop ammonia (NH3) gas-sensing probes with evaluations conducted at room temperature. The study addresses the critical challenge of achieving high sensitivity and selectivity in ammonia detection at low concentrations, which is a problem that persists in many existing sensor technologies. The nanofibers demonstrated high selectivity and optimal sensitivity for ammonia detection, which was attributed to the synergistic effects between the polyaniline and MgO that enhance gas adsorption. Furthermore, the study revealed that the MgO content critically influences both the morphology and the sensing performance, with higher MgO concentrations improving sensor response. This work underscores the potential of PANI/MgO composites as efficient and selective ammonia sensors, highlighting the importance of MgO content in optimizing material properties for gas-sensing applications.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.