{"title":"欧芹属芳香植物通过嫁接进行的丁香酚运输和生物合成。","authors":"Shogo Hirose, Kaito Sakai, Sawa Kobayashi, Masato Tsuro, Atsushi Morikami, Hironaka Tsukagoshi","doi":"10.5511/plantbiotechnology.24.0124a","DOIUrl":null,"url":null,"abstract":"<p><p>Aromatic compounds play essential roles in plant physiology and various industries because of their unique fragrances and beneficial properties. In this study, we investigated the transport and biosynthesis of eugenol, a prominent aromatic compound, within the <i>Ocimum</i> genus, using grafting experiments. Grafting sweet basil (<i>Ocimum basilicum</i>) scions onto diverse rootstocks, including tobacco (<i>Nicotiana benthamiana</i>) and thyme (<i>Thymus vulgaris</i>), revealed that eugenol is transported from the shoot to the root across distinct plant species. Furthermore, grafting within the <i>Ocimum</i> genus, which includes <i>O. basilicum</i>, <i>O. tenuiflorum</i>, and <i>O. americanum</i>, resulted in variations in eugenol transport and accumulation. The eugenol content in the shoots remained constant across all combinations, whereas the root eugenol levels varied depending on the scion-rootstock pair. To elucidate the biosynthetic capabilities of eugenol in <i>Ocimum</i> roots, we performed in vitro enzyme assays using crude protein extracts from roots, which revealed that eugenol can be synthesized in roots in addition to being transported. Expression analysis of eugenol synthase (EGSs) genes showed that <i>EGS4</i> expression was influenced by grafting in <i>O. basilicum</i> roots, suggesting compensation by other EGSs. Our results suggest that eugenol transport and biosynthesis are multifaceted processes influenced by the interactions between different species and tissues. The potential to engineer eugenol levels in rootstocks lacking biosynthetic capacity has potential applications in agriculture and industry. This study reveals the dynamic interplay between eugenol transport and biosynthesis in the <i>Ocimum</i> genus, providing insights into the manipulation of aromatic compound production in plants.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500594/pdf/","citationCount":"0","resultStr":"{\"title\":\"Eugenol transport and biosynthesis through grafting in aromatic plants of the <i>Ocimum</i> genus.\",\"authors\":\"Shogo Hirose, Kaito Sakai, Sawa Kobayashi, Masato Tsuro, Atsushi Morikami, Hironaka Tsukagoshi\",\"doi\":\"10.5511/plantbiotechnology.24.0124a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aromatic compounds play essential roles in plant physiology and various industries because of their unique fragrances and beneficial properties. In this study, we investigated the transport and biosynthesis of eugenol, a prominent aromatic compound, within the <i>Ocimum</i> genus, using grafting experiments. Grafting sweet basil (<i>Ocimum basilicum</i>) scions onto diverse rootstocks, including tobacco (<i>Nicotiana benthamiana</i>) and thyme (<i>Thymus vulgaris</i>), revealed that eugenol is transported from the shoot to the root across distinct plant species. Furthermore, grafting within the <i>Ocimum</i> genus, which includes <i>O. basilicum</i>, <i>O. tenuiflorum</i>, and <i>O. americanum</i>, resulted in variations in eugenol transport and accumulation. The eugenol content in the shoots remained constant across all combinations, whereas the root eugenol levels varied depending on the scion-rootstock pair. To elucidate the biosynthetic capabilities of eugenol in <i>Ocimum</i> roots, we performed in vitro enzyme assays using crude protein extracts from roots, which revealed that eugenol can be synthesized in roots in addition to being transported. Expression analysis of eugenol synthase (EGSs) genes showed that <i>EGS4</i> expression was influenced by grafting in <i>O. basilicum</i> roots, suggesting compensation by other EGSs. Our results suggest that eugenol transport and biosynthesis are multifaceted processes influenced by the interactions between different species and tissues. The potential to engineer eugenol levels in rootstocks lacking biosynthetic capacity has potential applications in agriculture and industry. This study reveals the dynamic interplay between eugenol transport and biosynthesis in the <i>Ocimum</i> genus, providing insights into the manipulation of aromatic compound production in plants.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500594/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5511/plantbiotechnology.24.0124a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.24.0124a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Eugenol transport and biosynthesis through grafting in aromatic plants of the Ocimum genus.
Aromatic compounds play essential roles in plant physiology and various industries because of their unique fragrances and beneficial properties. In this study, we investigated the transport and biosynthesis of eugenol, a prominent aromatic compound, within the Ocimum genus, using grafting experiments. Grafting sweet basil (Ocimum basilicum) scions onto diverse rootstocks, including tobacco (Nicotiana benthamiana) and thyme (Thymus vulgaris), revealed that eugenol is transported from the shoot to the root across distinct plant species. Furthermore, grafting within the Ocimum genus, which includes O. basilicum, O. tenuiflorum, and O. americanum, resulted in variations in eugenol transport and accumulation. The eugenol content in the shoots remained constant across all combinations, whereas the root eugenol levels varied depending on the scion-rootstock pair. To elucidate the biosynthetic capabilities of eugenol in Ocimum roots, we performed in vitro enzyme assays using crude protein extracts from roots, which revealed that eugenol can be synthesized in roots in addition to being transported. Expression analysis of eugenol synthase (EGSs) genes showed that EGS4 expression was influenced by grafting in O. basilicum roots, suggesting compensation by other EGSs. Our results suggest that eugenol transport and biosynthesis are multifaceted processes influenced by the interactions between different species and tissues. The potential to engineer eugenol levels in rootstocks lacking biosynthetic capacity has potential applications in agriculture and industry. This study reveals the dynamic interplay between eugenol transport and biosynthesis in the Ocimum genus, providing insights into the manipulation of aromatic compound production in plants.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.