拟南芥的 SHOOT GRAVITROPISM 5 介导了气孔对黑暗的反应。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Moeca Arai, Keiko Kigoshi, Kosuke Moriwaki, Kyoko Miyashita, Yoshimi Nakano, Sumire Fujiwara
{"title":"拟南芥的 SHOOT GRAVITROPISM 5 介导了气孔对黑暗的反应。","authors":"Moeca Arai, Keiko Kigoshi, Kosuke Moriwaki, Kyoko Miyashita, Yoshimi Nakano, Sumire Fujiwara","doi":"10.5511/plantbiotechnology.23.1122a","DOIUrl":null,"url":null,"abstract":"<p><p>Stomatal regulation, a multifaceted mechanism enabling plants to adapt to diverse environmental conditions and optimize photosynthesis for survival and growth, is considered crucial in drought stress tolerance research. To further enhance our understanding of stomatal regulation, we investigated the novel transcription factors involved in this process. Our findings reveal that <i>SHOOT GRAVITROPISM 5</i> (<i>SGR5</i>) is involved in the stomatal response to darkness in <i>Arabidopsis</i>. Water loss measurements showed that <i>SGR5</i>-overexpressing plants retained more water, whereas <i>SGR5</i>-knockout lines exhibited increased water loss compared with the control. Unexpectedly, our analyses indicated that SGR5 was not associated with the abscisic acid signaling pathway, in contrast to its homologous transcription factor, INDETERMINATE DOMAIN 14. Instead, <i>SGR5</i>-knockout lines exhibited weakened stomatal closure responses upon transition to darkness. Collectively, our results highlight the regulatory role of SGR5 in mediating stomatal movement in response to darkness.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500565/pdf/","citationCount":"0","resultStr":"{\"title\":\"SHOOT GRAVITROPISM 5 mediates the stomatal response to darkness in <i>Arabidopsis</i>.\",\"authors\":\"Moeca Arai, Keiko Kigoshi, Kosuke Moriwaki, Kyoko Miyashita, Yoshimi Nakano, Sumire Fujiwara\",\"doi\":\"10.5511/plantbiotechnology.23.1122a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stomatal regulation, a multifaceted mechanism enabling plants to adapt to diverse environmental conditions and optimize photosynthesis for survival and growth, is considered crucial in drought stress tolerance research. To further enhance our understanding of stomatal regulation, we investigated the novel transcription factors involved in this process. Our findings reveal that <i>SHOOT GRAVITROPISM 5</i> (<i>SGR5</i>) is involved in the stomatal response to darkness in <i>Arabidopsis</i>. Water loss measurements showed that <i>SGR5</i>-overexpressing plants retained more water, whereas <i>SGR5</i>-knockout lines exhibited increased water loss compared with the control. Unexpectedly, our analyses indicated that SGR5 was not associated with the abscisic acid signaling pathway, in contrast to its homologous transcription factor, INDETERMINATE DOMAIN 14. Instead, <i>SGR5</i>-knockout lines exhibited weakened stomatal closure responses upon transition to darkness. Collectively, our results highlight the regulatory role of SGR5 in mediating stomatal movement in response to darkness.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500565/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5511/plantbiotechnology.23.1122a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.23.1122a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

气孔调控是植物适应不同环境条件并优化光合作用以促进生存和生长的一种多方面机制,在干旱胁迫耐受性研究中被认为是至关重要的。为了进一步加深对气孔调控的理解,我们研究了参与这一过程的新型转录因子。我们的研究结果表明,SHOOT GRAVITROPISM 5(SGR5)参与了拟南芥气孔对黑暗的反应。失水测量结果表明,与对照相比,SGR5基因缺失的植株保留了更多的水分,而SGR5基因敲除株系的失水则有所增加。意想不到的是,我们的分析表明,与同源转录因子 INDETERMINATE DOMAIN 14 不同,SGR5 与脱落酸信号途径无关。相反,SGR5 基因敲除株系在过渡到黑暗环境时表现出较弱的气孔关闭反应。总之,我们的研究结果突显了 SGR5 在介导气孔运动以应对黑暗条件中的调控作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SHOOT GRAVITROPISM 5 mediates the stomatal response to darkness in Arabidopsis.

Stomatal regulation, a multifaceted mechanism enabling plants to adapt to diverse environmental conditions and optimize photosynthesis for survival and growth, is considered crucial in drought stress tolerance research. To further enhance our understanding of stomatal regulation, we investigated the novel transcription factors involved in this process. Our findings reveal that SHOOT GRAVITROPISM 5 (SGR5) is involved in the stomatal response to darkness in Arabidopsis. Water loss measurements showed that SGR5-overexpressing plants retained more water, whereas SGR5-knockout lines exhibited increased water loss compared with the control. Unexpectedly, our analyses indicated that SGR5 was not associated with the abscisic acid signaling pathway, in contrast to its homologous transcription factor, INDETERMINATE DOMAIN 14. Instead, SGR5-knockout lines exhibited weakened stomatal closure responses upon transition to darkness. Collectively, our results highlight the regulatory role of SGR5 in mediating stomatal movement in response to darkness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信