{"title":"人工光照下生长的转基因茄子果实中的β-胡萝卜素积累量较高。","authors":"Ryohei Yamamoto, Seigo Higuchi, Yuji Iwata, Satomi Takeda, Nozomu Koizumi, Kei-Ichiro Mishiba","doi":"10.5511/plantbiotechnology.23.1129b","DOIUrl":null,"url":null,"abstract":"<p><p>Eggplant (<i>Solanum melongena</i> L.) fruits are known to contain few carotenoids such as β-carotene, which are abundant in congener tomato fruits. In a previous study, we introduced a fruit-specific <i>EEF48</i> gene promoter-driven <i>crtB</i> gene encoding phytoene synthase (PSY) of <i>Erwinia uredovora</i> into eggplant 'Senryo No. 2'. The transgenic plants grown in a greenhouse set fruits that accumulated β-carotene (∼1.67 µg g<sup>-1</sup>FW) in the T<sub>0</sub> and T<sub>1</sub> generations. In the present study, we grew T<sub>1</sub> and T<sub>2</sub> generations of the transgenic eggplant plants in artificial climate chambers to investigate their fruit set and β-carotene accumulation. No clear difference in β-carotene accumulation was observed in the fruit of transgenic plants grown under either HID (high-intensity discharge) or LED (light-emitting diode) light, or between T<sub>1</sub> and T<sub>2</sub> generations. The β-carotene accumulation (8.83 µg g<sup>-1</sup>FW on average) was approximately 5 times higher than the previous results obtained from greenhouse-grown plants. However, the fruit weight and size of the T-DNA (+) plants were significantly smaller than that of their null-segregant T-DNA (-) plants derived from the same line, suggesting that β-carotene accumulation may inhibit fruit development. Considering that a part of plants grown under LED irradiation failed to set fruits or set smaller fruits than those grown under HID irradiation, the light condition in the LED chamber may not be sufficient to promote fruit development. The present results are expected to provide valuable information for the selection of transgenic eggplants with high β-carotene content in fruit under artificial lighting.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 1","pages":"77-81"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500568/pdf/","citationCount":"0","resultStr":"{\"title\":\"High β-carotene accumulation in transgenic eggplant fruits grown under artificial light.\",\"authors\":\"Ryohei Yamamoto, Seigo Higuchi, Yuji Iwata, Satomi Takeda, Nozomu Koizumi, Kei-Ichiro Mishiba\",\"doi\":\"10.5511/plantbiotechnology.23.1129b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eggplant (<i>Solanum melongena</i> L.) fruits are known to contain few carotenoids such as β-carotene, which are abundant in congener tomato fruits. In a previous study, we introduced a fruit-specific <i>EEF48</i> gene promoter-driven <i>crtB</i> gene encoding phytoene synthase (PSY) of <i>Erwinia uredovora</i> into eggplant 'Senryo No. 2'. The transgenic plants grown in a greenhouse set fruits that accumulated β-carotene (∼1.67 µg g<sup>-1</sup>FW) in the T<sub>0</sub> and T<sub>1</sub> generations. In the present study, we grew T<sub>1</sub> and T<sub>2</sub> generations of the transgenic eggplant plants in artificial climate chambers to investigate their fruit set and β-carotene accumulation. No clear difference in β-carotene accumulation was observed in the fruit of transgenic plants grown under either HID (high-intensity discharge) or LED (light-emitting diode) light, or between T<sub>1</sub> and T<sub>2</sub> generations. The β-carotene accumulation (8.83 µg g<sup>-1</sup>FW on average) was approximately 5 times higher than the previous results obtained from greenhouse-grown plants. However, the fruit weight and size of the T-DNA (+) plants were significantly smaller than that of their null-segregant T-DNA (-) plants derived from the same line, suggesting that β-carotene accumulation may inhibit fruit development. Considering that a part of plants grown under LED irradiation failed to set fruits or set smaller fruits than those grown under HID irradiation, the light condition in the LED chamber may not be sufficient to promote fruit development. The present results are expected to provide valuable information for the selection of transgenic eggplants with high β-carotene content in fruit under artificial lighting.</p>\",\"PeriodicalId\":20411,\"journal\":{\"name\":\"Plant Biotechnology\",\"volume\":\"41 1\",\"pages\":\"77-81\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500568/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5511/plantbiotechnology.23.1129b\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.23.1129b","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
High β-carotene accumulation in transgenic eggplant fruits grown under artificial light.
Eggplant (Solanum melongena L.) fruits are known to contain few carotenoids such as β-carotene, which are abundant in congener tomato fruits. In a previous study, we introduced a fruit-specific EEF48 gene promoter-driven crtB gene encoding phytoene synthase (PSY) of Erwinia uredovora into eggplant 'Senryo No. 2'. The transgenic plants grown in a greenhouse set fruits that accumulated β-carotene (∼1.67 µg g-1FW) in the T0 and T1 generations. In the present study, we grew T1 and T2 generations of the transgenic eggplant plants in artificial climate chambers to investigate their fruit set and β-carotene accumulation. No clear difference in β-carotene accumulation was observed in the fruit of transgenic plants grown under either HID (high-intensity discharge) or LED (light-emitting diode) light, or between T1 and T2 generations. The β-carotene accumulation (8.83 µg g-1FW on average) was approximately 5 times higher than the previous results obtained from greenhouse-grown plants. However, the fruit weight and size of the T-DNA (+) plants were significantly smaller than that of their null-segregant T-DNA (-) plants derived from the same line, suggesting that β-carotene accumulation may inhibit fruit development. Considering that a part of plants grown under LED irradiation failed to set fruits or set smaller fruits than those grown under HID irradiation, the light condition in the LED chamber may not be sufficient to promote fruit development. The present results are expected to provide valuable information for the selection of transgenic eggplants with high β-carotene content in fruit under artificial lighting.
期刊介绍:
Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.