{"title":"PreMLS:基于 ClusterCentroids 的欠采样技术可预测多个赖氨酸位点。","authors":"Yun Zuo, Xingze Fang, Jiayong Wan, Wenying He, Xiangrong Liu, Xiangxiang Zeng, Zhaohong Deng","doi":"10.1371/journal.pcbi.1012544","DOIUrl":null,"url":null,"abstract":"<p><p>The translated protein undergoes a specific modification process, which involves the formation of covalent bonds on lysine residues and the attachment of small chemical moieties. The protein's fundamental physicochemical properties undergo a significant alteration. The change significantly alters the proteins' 3D structure and activity, enabling them to modulate key physiological processes. The modulation encompasses inhibiting cancer cell growth, delaying ovarian aging, regulating metabolic diseases, and ameliorating depression. Consequently, the identification and comprehension of post-translational lysine modifications hold substantial value in the realms of biological research and drug development. Post-translational modifications (PTMs) at lysine (K) sites are among the most common protein modifications. However, research on K-PTMs has been largely centered on identifying individual modification types, with a relative scarcity of balanced data analysis techniques. In this study, a classification system is developed for the prediction of concurrent multiple modifications at a single lysine residue. Initially, a well-established multi-label position-specific triad amino acid propensity algorithm is utilized for feature encoding. Subsequently, PreMLS: a novel ClusterCentroids undersampling algorithm based on MiniBatchKmeans was introduced to eliminate redundant or similar major class samples, thereby mitigating the issue of class imbalance. A convolutional neural network architecture was specifically constructed for the analysis of biological sequences to predict multiple lysine modification sites. The model, evaluated through five-fold cross-validation and independent testing, was found to significantly outperform existing models such as iMul-kSite and predML-Site. The results presented here aid in prioritizing potential lysine modification sites, facilitating subsequent biological assays and advancing pharmaceutical research. To enhance accessibility, an open-access predictive script has been crafted for the multi-label predictive model developed in this study.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530015/pdf/","citationCount":"0","resultStr":"{\"title\":\"PreMLS: The undersampling technique based on ClusterCentroids to predict multiple lysine sites.\",\"authors\":\"Yun Zuo, Xingze Fang, Jiayong Wan, Wenying He, Xiangrong Liu, Xiangxiang Zeng, Zhaohong Deng\",\"doi\":\"10.1371/journal.pcbi.1012544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The translated protein undergoes a specific modification process, which involves the formation of covalent bonds on lysine residues and the attachment of small chemical moieties. The protein's fundamental physicochemical properties undergo a significant alteration. The change significantly alters the proteins' 3D structure and activity, enabling them to modulate key physiological processes. The modulation encompasses inhibiting cancer cell growth, delaying ovarian aging, regulating metabolic diseases, and ameliorating depression. Consequently, the identification and comprehension of post-translational lysine modifications hold substantial value in the realms of biological research and drug development. Post-translational modifications (PTMs) at lysine (K) sites are among the most common protein modifications. However, research on K-PTMs has been largely centered on identifying individual modification types, with a relative scarcity of balanced data analysis techniques. In this study, a classification system is developed for the prediction of concurrent multiple modifications at a single lysine residue. Initially, a well-established multi-label position-specific triad amino acid propensity algorithm is utilized for feature encoding. Subsequently, PreMLS: a novel ClusterCentroids undersampling algorithm based on MiniBatchKmeans was introduced to eliminate redundant or similar major class samples, thereby mitigating the issue of class imbalance. A convolutional neural network architecture was specifically constructed for the analysis of biological sequences to predict multiple lysine modification sites. The model, evaluated through five-fold cross-validation and independent testing, was found to significantly outperform existing models such as iMul-kSite and predML-Site. The results presented here aid in prioritizing potential lysine modification sites, facilitating subsequent biological assays and advancing pharmaceutical research. To enhance accessibility, an open-access predictive script has been crafted for the multi-label predictive model developed in this study.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530015/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012544\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012544","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
PreMLS: The undersampling technique based on ClusterCentroids to predict multiple lysine sites.
The translated protein undergoes a specific modification process, which involves the formation of covalent bonds on lysine residues and the attachment of small chemical moieties. The protein's fundamental physicochemical properties undergo a significant alteration. The change significantly alters the proteins' 3D structure and activity, enabling them to modulate key physiological processes. The modulation encompasses inhibiting cancer cell growth, delaying ovarian aging, regulating metabolic diseases, and ameliorating depression. Consequently, the identification and comprehension of post-translational lysine modifications hold substantial value in the realms of biological research and drug development. Post-translational modifications (PTMs) at lysine (K) sites are among the most common protein modifications. However, research on K-PTMs has been largely centered on identifying individual modification types, with a relative scarcity of balanced data analysis techniques. In this study, a classification system is developed for the prediction of concurrent multiple modifications at a single lysine residue. Initially, a well-established multi-label position-specific triad amino acid propensity algorithm is utilized for feature encoding. Subsequently, PreMLS: a novel ClusterCentroids undersampling algorithm based on MiniBatchKmeans was introduced to eliminate redundant or similar major class samples, thereby mitigating the issue of class imbalance. A convolutional neural network architecture was specifically constructed for the analysis of biological sequences to predict multiple lysine modification sites. The model, evaluated through five-fold cross-validation and independent testing, was found to significantly outperform existing models such as iMul-kSite and predML-Site. The results presented here aid in prioritizing potential lysine modification sites, facilitating subsequent biological assays and advancing pharmaceutical research. To enhance accessibility, an open-access predictive script has been crafted for the multi-label predictive model developed in this study.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.